Skip to main content

Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and Variational Autoencoders

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges (STACOM 2019)

Abstract

Maintaining good cardiac function for as long as possible is a major concern for healthcare systems worldwide and there is much interest in learning more about the impact of different risk factors on cardiac health. The aim of this study is to analyze the impact of systolic blood pressure (SBP) on cardiac function while preserving the interpretability of the model using known clinical biomarkers in a large cohort of the UK Biobank population. We propose a novel framework that combines deep learning based estimation of interpretable clinical biomarkers from cardiac cine MR data with a variational autoencoder (VAE). The VAE architecture integrates a regression loss in the latent space, which enables the progression of cardiac health with SBP to be learnt. Results on 3,600 subjects from the UK Biobank show that the proposed model allows us to gain important insight into the deterioration of cardiac function with increasing SBP, identify key interpretable factors involved in this process, and lastly exploit the model to understand patterns of positive and adverse adaptation of cardiac function.

E. Puyol-Antón and B. Ruijsink—Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bello, G., Dawes, T., Duan, J., Biffi, C., et al.: Deep-learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell. 1(2), 95 (2019)

    Article  Google Scholar 

  2. Bajpai, J., Sahay, A., Agarwal, A., et al.: Impact of prehypertension on left ventricular structure, function and geometry. J. Clin. Diagn. Res. 8(4), BC07 (2014)

    Google Scholar 

  3. Mo, R., Nordrehaug, J.-E., Omvik, P., Lund-Johansen, P.: The bergen blood pressure study: prehypertensive changes in cardiac structure and function in offspring of hypertensive families. Blood Press. 4(1), 16–22 (1995)

    Article  Google Scholar 

  4. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  5. Biffi, C., Cerrolaza, J., Tarroni, G., et al.: Explainable shape analysis through deep hierarchical generative models: application to cardiac remodeling. arXiv preprint arXiv:1907.00058. (2019)

  6. Clough, J., Oksuz, I., Puyol-Anton, E., et al.: Global and local interpretability for cardiac MRI classification. arXiv preprint arXiv:1906.06188. (2019)

    Google Scholar 

  7. Xie, J., Wang, X., Liu, Y., Bai, Y.: Autoencoder-based deep belief regression network for air particulate matter concentration forecasting. J. Intell. Fuzzy Syst. 34(6), 3475–3486 (2018)

    Article  Google Scholar 

  8. Bose, T., Majumdar, A., Chattopadhyay, T.: Machine load estimation via stacked autoencoder regression. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2126–2130. IEEE (2018)

    Google Scholar 

  9. Xie, R., Wen, J., Quitadamo, A., Cheng, J., Shi, X.: A deep auto-encoder model for gene expression prediction. BMC Genomics 18(9), 845 (2017)

    Article  Google Scholar 

  10. Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2015)

    Article  Google Scholar 

  11. Chan, M., Grossi, C., Khawaja, A., et al.: Associations with intraocular pressure in a large cohort: results from the UK biobank. Ophthalmology 123(4), 771–782 (2016)

    Article  Google Scholar 

  12. Ruijsink, B., Puyol-Antón, E., Oksuz, I., et al.: Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC: Cardiovasc. Imaging (2019)

    Google Scholar 

  13. Bai, W., Sinclair, M., Tarroni, G., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovas. Magn. Reson. 20(1), 65 (2018)

    Article  Google Scholar 

  14. Sinclair, M., Bai, W., Puyol-Antón, E., Oktay, O., Rueckert, D., King, A.P.: Fully automated segmentation-based respiratory motion correction of multiplanar cardiac magnetic resonance images for large-scale datasets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 332–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_38

    Chapter  Google Scholar 

  15. Du Bois, D.: A formula to estimate the approximate surface area if height and weight be known. Nutrition 5, 303–313 (1989)

    Google Scholar 

  16. Thompson, S., Higgins, J.: How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21(11), 1559–1573 (2002)

    Article  Google Scholar 

  17. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Lin, Y., Jeon, Y.: Random forests and adaptive nearest neighbors. J. Am. Stat. Assoc. 101(474), 578–590 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC (grants EP/R005516/1 and EP/P001009/1) and the Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering and Imaging Sciences, King’s College London (WT 203148/Z/16/Z). This research has been conducted using the UK Biobank Resource under Application Number 17806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Puyol-Antón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puyol-Antón, E. et al. (2020). Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and Variational Autoencoders. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics