Skip to main content

Abstract

Even though the DSM and ICD have been of value in facilitating communication between clinicians and researchers, they failed in implementing the neuroscientific data, missing to establishing “external validator” of the clinical syndrome, and therefore were unsuccessful in establishing the validity of their diagnostic categories beyond the clinical level.

Harshly criticism accompanied the publication of the fifth version of DSM (DSM-5) in 2013 by the American Psychiatric Association (APA), because it did not keep the promise of a heightened focus on neurobiological markers as well as to the use of a dimensional system. Indeed, it did not represent a radical change in the diagnosis and classification in respect to what had been imagined. In this context, the approach proposed by the National Institute of Mental Health (NIHM) called Research Domain Criteria (R-Do-C), emerged as a useful framework, as a project aiming to transform diagnosis by incorporating genetics, imaging, cognitive science, and other information levels in order to establish the starting point for a new classification system. It assumes that mental disorders are biological conditions involving brain circuits, which implicate specific domains of cognition, emotion and behavior, and therefore symptoms cannot be constrained by the current DSM categories. In the aim of a diagnostic system which should be based on the emerging research data and not on the current categories that are based on a collection of symptoms, the R-Do-C approach requires that each level of analysis should be understood across a dimension of function (the cross-cutting correction of DSM). The reason of this purpose is that it was not possible to design a system based on biomarkers or cognitive performance based on categorical definition of the clinical entities. By collecting the genetic, imaging, physiologic, and cognitive data (and not only symptoms), and analyzing how they relate each other and cluster together, we can also be informed on how these clusters relate to treatment response.

The goal of the R-Do-C project is particularly important in the treatment of ADHD, as it is an extremely heterogeneous disorder requiring specific and targeted interventions, depending by what dimension (i.e., inattention, impulsivity, hyperactivity, emotional dysregulation) is more affected at the precise moment when the patient asks for help. The R-Do-C framework can also give us an explanation on how the ADHD core dysfunctions (in terms of dimensions and executive functions) can change across the development, and how targeted treatment on one dimension can impact on the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karalunas SL, Geurts HM, Konrad K, Bender S, Nigg JT. Annual research review: reaction time variability in ADHD and autism spectrum disorders: measurement and mechanisms of a proposed trans-diagnostic phenotype. J Child Psychol Psychiatry Allied Discip. 2014b;55(6):685–710. https://doi.org/10.1111/jcpp.12217.

    Article  Google Scholar 

  2. Karalunas SL, Fair D, Musser ED, Aykes K, Iyer SP, Nigg JT. Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiat. 2014a;71:1015–24. https://doi.org/10.1001/jamapsychiatry.2014.763.

    Article  Google Scholar 

  3. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Wang P. Research domain criteria (rdoc): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51. [PubMed: 20595427].

    Article  PubMed  Google Scholar 

  4. Sanislow CA, Pine DS, Quinn KJ, Kozak MJ, Garvey MA, Heinssen RK, Cuthbert BN. Developing constructs for psychopathology research: research domain criteria. J Abnorm Psychol. 2010;119:631–9.

    Article  PubMed  Google Scholar 

  5. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160:636–45.

    Article  PubMed  Google Scholar 

  6. Nolen-Hoeksema S, Watkins ER. A heuristic for developing transdiagnostic models of psychopathology: explaining multifinality and divergent trajectories. Perspect Psychol Sci. 2011;6:589–609.

    Article  PubMed  Google Scholar 

  7. Kendler K, Neale M. Endophenotype: a conceptual analysis. Mol Psychiatry. 2010;15:789–97. [PubMed: 20142819].

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gallo EF, Posner J (2016). Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry. 2016;3(6):555-567. https://doi.org/10.1016/S2215-0366(16)00096–1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nakao T, Radua C, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168:1154–63. [PubMed: 21865529].

    Article  PubMed  Google Scholar 

  10. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26. [PubMed: 22118249].

    Article  CAS  PubMed  Google Scholar 

  11. Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104:19649–54. [PubMed: 18024590].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mous SE, Muetzel RL, El Marroun H, Polderman TJ, van der Lugt A, Jaddoe VW, et al. Cortical thickness and inattention/hyperactivity symptoms in young children: a population-based study. Psychol Med. 2014;44:3203–13.

    Article  CAS  PubMed  Google Scholar 

  13. van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2012;36:1093–106. [PubMed: 22305957].

    Article  PubMed  Google Scholar 

  14. Nagel BJ, Bathula D, Herting M, et al. Altered white matter microstructure in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50:283–92. [PubMed: 21334568].

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cha J, Fekete T, Siciliano F, et al. Neural correlates of aggression in medication-naive children with ADHD: multivariate analysis of morphometry and tractography. Neuropsychopharmacology. 2015;40:1717–25. [PubMed: 25645374].

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castellanos FX, Margulies DS, Kelly C, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63:332–7. [PubMed: 17888409].

    Article  PubMed  Google Scholar 

  17. Sun L, Cao Q, Long X, et al. Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res. 2012;201:120–7. [PubMed: 22424873].

    Article  PubMed  Google Scholar 

  18. Sato JR, Hoexter MQ, Castellanos XF, Rohde LA. Abnormal brain connectivity patterns in adults with ADHD: a coherence study. PLoS One. 2012;7:e45671. [PubMed: 23049834].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao X, Cao Q, Long X, et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder. Brain Res. 2009;1303:195–206. [PubMed: 19699190].

    Article  CAS  PubMed  Google Scholar 

  20. Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31:977–86. [PubMed: 17445893].

    Article  PubMed  Google Scholar 

  21. Cortese S, Kelly C, Chabernaud C, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169:1038–55. [PubMed: 22983386].

    Article  PubMed  Google Scholar 

  22. Hart H, Radua J, Mataix-Cols D, Rubia K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36:2248–56.

    Article  PubMed  Google Scholar 

  23. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. 2014;38:125–34. [PubMed: 23928090].

    Article  PubMed  Google Scholar 

  24. Willcutt EG, et al. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.

    Article  PubMed  Google Scholar 

  25. Luo Y, Weibman D, Halperin JM, Li X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front Hum Neurosci. 2019;13:1–12. https://doi.org/10.3389/fnhum.2019.00042.

    Article  CAS  Google Scholar 

  26. Nigg JT, Stavro G, Ettenhofer M, Hambrick DZ, Miller T, Henderson JM. Executive functions and ADHD in adults: evidence for selective effects on ADHD symptom domains. J Abnorm Psychol. 2005;114:706–17. https://doi.org/10.1037/0021-843x.114.3.706.

    Article  PubMed  Google Scholar 

  27. Sanislow CA, Quinn KJ, Sypher I. NIMH research domain criteria (RDoC). Enc Clin Psychol. 2015:1–6. https://doi.org/10.1002/9781118625392.wbecp541.

  28. Morris SE, Cuthbert BN. Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci. 2012;14:29–37.

    PubMed  PubMed Central  Google Scholar 

  29. Zhu Y, Yang D, Ji W, et al. The relationship between neurocircuitry dysfunctions and attention deficit hyperactivity disorder: a review. Biomed Res Int. 2016;2016:7p. https://doi.org/10.1155/2016/3821579. Article ID 3821579.

    Article  Google Scholar 

  30. Aron AR, Cai W, Badre D, Robbins TW. Evidence supports specific braking function for inferior PFC. Trends Cogn Sci. 2015;19(12):711–2. https://doi.org/10.1016/j.tics.2015.09.001.

    Article  PubMed  Google Scholar 

  31. Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1285–92. https://doi.org/10.1016/j.biopsych.2004.10.026.

    Article  PubMed  Google Scholar 

  32. Chambers CD, Garavan H, Bellgrove MA. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev. 2009;33(5):631–46. https://doi.org/10.1016/j.neubiorev.2008.08.016.

    Article  PubMed  Google Scholar 

  33. Hwang S, Me H, Parsley I, Tyler PM, Erway AK, Botkin ML, et al. Segregating sustained attention from response inhibition in ADHD: an fMRI study. Neuroimage Clin. 2019;21:101677. https://doi.org/10.1016/j.nicl.2019.101677.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, et al. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2005;46(1):94–111. https://doi.org/10.1111/j.1469-7610.2004.00337.x.

    Article  PubMed  Google Scholar 

  35. Durston S, Tottenham NT, Thomas KM, Davidson MC, Eigsti IM, Yang Y, et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry. 2003;53(10):871–8.

    Article  PubMed  Google Scholar 

  36. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiat. 2013;70:185–98. [PubMed: 23247506].

    Article  Google Scholar 

  37. Clark VP, Fannon S, Lai S, Benson R, Bauer L. Responses to rare visual target and distractor stimuli using event-related fMRI. J Neurophysiol. 2000;83(5):3133–9. https://doi.org/10.1152/jn.2000.83.5.3133.

    Article  CAS  PubMed  Google Scholar 

  38. Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002;87(1):615–20. https://doi.org/10.1152/jn.00636.2001.

    Article  PubMed  Google Scholar 

  39. Kiehl KA, Laurens KR, Duty TL, Forster BB, Liddle PF. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology. 2001;38(1):133–42.

    Article  CAS  PubMed  Google Scholar 

  40. Baroni A, Castellanos FX. Neuroanatomic and cognitive abnormalities in attention-deficit/hyperactivity disorder in the era of ‘high definition’ neuroimaging. Curr Opin Neurobiol. 2014;30:1–8. https://doi.org/10.1016/j.conb.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  41. Massat I, Slama H, Kavec M, Linotte S, Mary A, Baleriaux D, et al. Working memory-related functional brain patterns in never medicated children with ADHD. PLoS One. 2012;7:e49392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fassbender C, Schweitzer JB, Cortes CR, Tagamets MA, Windsor TA, Reeves GM, et al. Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function. PLoS One. 2011;6:e27240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bollmann S, Ghisleni C, Poil SS, Martin E, Ball J, Eich-Höchli D, et al. Age-dependent and-independent changes in attention-deficit/hyperactivity disorder (ADHD) during spatial working memory performance. World J Biol Psychiatry. 2017;18(4):279–90.

    Article  PubMed  Google Scholar 

  44. Baroni A, Castellanos FX. Neuroanatomic and cognitive abnormalities in attention-deficit/hyperactivity disorder in the era of ‘high definition’ neuroimaging. Curr Opin Psychiatry. 2015;30:1–8.

    CAS  Google Scholar 

  45. Noreika V, Falter CM, Rubia K. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia. 2013;51:235–66.

    Article  PubMed  Google Scholar 

  46. Tripp G, Wickens JR. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in {ADHD}. J Child Psychol Psychiatry. 2008;49:691–704. https://doi.org/10.1111/j.1469-7610.2007.01851.x.

    Article  PubMed  Google Scholar 

  47. Luman M, Tripp G, Scheres A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: a review and research agenda. Neurosci Biobehav Rev. 2010;34:744–54. https://doi.org/10.1016/j.neubiorev.2009.11.021.

    Article  PubMed  Google Scholar 

  48. Costa Dias TG, Wilson VB, Bathula DR, Iyer S, Mills KL, Thurlow BL, et al. Reward circuit connectivity relates to delay discounting in children with attention-deficit/ hyperactivity disorder. Eur Neuropsychopharmacol. 2012;23:33–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Furukawa E, Bado P, Tripp G, Mattos P, Wickens JR, Bramati IE, et al. Abnormal striatal {BOLD} responses to reward anticipation and reward delivery in {ADHD}. PLoS One. 2014;9:e89129. https://doi.org/10.1371/journal.pone.0089129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Plichta MM, Vasic N, Wolf RC, Lesch K-P, Brummer D, Jacob C, et al. Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2009;65:7–14. https://doi.org/10.1016/j.biopsych.2008.07.008.

    Article  PubMed  Google Scholar 

  51. Tomasi D, Volkow ND. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:443–50. https://doi.org/10.1016/j.biopsych.2011.11.003.

    Article  PubMed  Google Scholar 

  52. Musser ED, Raiker JS. Attention-deficit/hyperactivity disorder: an integrated developmental psychopathology and Research Domain Criteria (RDoC) approach. Compr Psychiatry. 2019;90:65–72. https://doi.org/10.1016/j.comppsych.2018.12.016.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martinussen R, Hayden J, Hogg-Johnson S, Tannock R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2005;44:377–84. https://doi.org/10.1097/01.chi.0000153228.72591.73.

    Article  PubMed  Google Scholar 

  54. Kasper LJ, Alderson RM, Hudec KL. Moderators of working memory deficits in children with attention-deficit/hyperactivity disorder ({ADHD}): a meta-analytic review. Clin Psychol Rev. 2012;32:605–17. https://doi.org/10.1016/j.cpr.2012.07.001.

    Article  PubMed  Google Scholar 

  55. Alderson RM, Kasper LJ, Hudec KL, Patros CH. Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: a meta-analytic review. Neuropsychology. 2013;27:287.

    Article  PubMed  Google Scholar 

  56. Brocki KC, Eninger L, Thorell LB, Bohlin G. Interrelations between executive function and symptoms of hyperactivity/impulsivity and inattention in preschoolers: a two year longitudinal study. J Abnorm Child Psychol. 2009;38:163–71. https://doi.org/10.1007/s10802-009-9354-9.

    Article  Google Scholar 

  57. Thorell LB. Do delay aversion and executive function deficits make distinct contributions to the functional impact of {ADHD} symptoms? A study of early academic skill deficits. J Child Psychol Psychiatry. 2007;48:1061–70. https://doi.org/10.1111/j.1469-7610.2007.01777.x.

    Article  PubMed  Google Scholar 

  58. Boonstra AM, Oosterlaan J, Sergeant JA, Buitelaar JANK. Executive functioning in adult {ADHD}: a meta-analytic review. Psychol Med. 2005;35:1097–108. https://doi.org/10.1017/s003329170500499x.

    Article  PubMed  Google Scholar 

  59. Schoechlin C, Engel R. Neuropsychological performance in adult attention-deficit hyperactivity disorder: meta-analysis of empirical data. Arch Clin Neuropsychol. 2005;20:727–44. https://doi.org/10.1016/j.acn.2005.04.005.

    Article  PubMed  Google Scholar 

  60. Marsh PJ, Williams LM. ADHD and schizophrenia phenomenology: visual scanpaths to emotional faces as a potential psychophysiological marker? Neurosci Biobehav Rev. 2006;30:651–65.

    Article  PubMed  Google Scholar 

  61. Ibáñez A, Petroni A, Urquina H, Torrente F, Torralva T, Hurtado E, et al. Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function. Soc Neurosci. 2011;6(5–6):464–81. https://doi.org/10.1080/17470919.2011.620769.

    Article  PubMed  Google Scholar 

  62. Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann BG, Hebebrand J, Daum I. Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2010;34:734–43.

    Article  CAS  PubMed  Google Scholar 

  63. Salerno L, Makris N, Pallanti S. Sleep disorders in adult ADHD: a key feature. J Psychopathol. 2016;22(2):135–40.

    Google Scholar 

  64. Makris N, Biederman J, Monuteaux MC, Seidman LJ. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci. 2009;31(1–2):36–49. https://doi.org/10.1159/000207492.

    Article  CAS  PubMed  Google Scholar 

  65. Demers MM, McNevin N, Azar NR. ADHD and motor control: a review of the motor control deficiencies associated with attention deficit/hyperactivity disorder and current treatment options. Crit Rev. 2013;25(3–4):231–9. ™ in Physical and Rehabilitation Medicine.

    Google Scholar 

  66. Bradshaw JL, Mattingley JB. Clinical neuropsychology: behavioral and brain science. Amsterdam: Elsevier; 2013.

    Google Scholar 

  67. Owens J, Gruber R, Brown T, Corkum P, Cortese S, O’Brien L, Stein M, Weiss M. Future research directions in sleep and ADHD: report of a consensus working group. J Atten Disord. 2013;17:550–64.

    Article  PubMed  Google Scholar 

  68. Coogan AN, Baird AL, Popa-Wagner A, et al. Circadian rhythms and attention deficit hyperactivity disorder: the what, the when and the why. Prog Neuropsychopharmacol Biol Psychiatry. 2016;67:74–81.

    Article  PubMed  Google Scholar 

  69. Shaw P, Stringaris A, Nigg J, Leibenluft E. Emotion dysregulation in attention deficit hyperactivity disorder. Am J Psychiatry. 2014;171:276–93.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Faraone SV, Rostain AL, Blader J, Busch B, Childress AC, Connor DF, Newcorn JH. Practitioner review: emotional dysregulation in attention-deficit/hyperactivity disorder—implications for clinical recognition and intervention. J Child Psychol Psychiatry. 2019;60(2):133–50. https://doi.org/10.1111/jcpp.12899. Epub 2018 Apr 6.

    Article  PubMed  Google Scholar 

  71. Koob GF. Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol. 2013;23(4):559–63. PubMed PMID: 23628232.

    Article  CAS  PubMed  Google Scholar 

  72. Seeman P. Parkinson’s disease treatment may cause impulse control disorder via dopamine D3 receptors. Synapse. 2015;69(4):183–9. PubMed PMID: 25645960.

    Article  CAS  PubMed  Google Scholar 

  73. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):829, 833–57. PubMed PMID: 18574483; PubMed Central PMCID: PMCPMC2745893.

    Google Scholar 

  74. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10(3):318–25. PubMed PMID: 10731226.

    Article  CAS  PubMed  Google Scholar 

  75. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perou R, Bitsko RH, Blumberg SJ, Pastor P, Ghandour RM, Gfroerer JC, et al. Mental health surveillance among children—United States, 2005–2011. MMWR. 2013;62:1–35.

    Google Scholar 

  77. Biederman J, Kwon A, Aleardi M, Chouinard VA, Marino T, Cole H, et al. Absence of gender effects on attention deficit hyperactivity disorder: findings in nonreferred subjects. Am J Psychiatry. 2005;162:1083–9. https://doi.org/10.1176/appi.ajp.162.6.1083.

    Article  PubMed  Google Scholar 

  78. Cuthbert BN, Insel TR. Toward new approaches to psychotic disorders: the NIMH Research Domain Criteria project. Schizophr Bull. 2010;36:1061–2.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cuthbert BN, Insel TR. Toward precision medicine in psychiatry: the NIMH research domain criteria project. In: Charney DS, Sklar P, Buxbaum JD, Nestler EJ, editors. Neurobiology of mental illness. 4th ed. New York: Oxford University Press; 2013a. p. 1076–88.

    Google Scholar 

  80. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013b;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pallanti, S., Salerno, L. (2020). ADHD Circuitries in the R-Do-C Perspective. In: The Burden of Adult ADHD in Comorbid Psychiatric and Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-39051-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39051-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39050-1

  • Online ISBN: 978-3-030-39051-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics