Skip to main content

Efficacy of a Classical and a Few Modified Machine Learning Algorithms in Forecasting Financial Time Series

  • Chapter
  • First Online:
Book cover Internet of Things, Smart Computing and Technology: A Roadmap Ahead

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 266))

Abstract

Financial markets and economy forecast are closely related to each other. Forecast of prices of financial assets is therefore of importance for any economy-planning be it global, national or individual. There are various global, local and psychological factors that affect financial markets making its forecasting a non-trivial, complex problem. Numerous machine learning techniques have been applied by various researchers for a last few decades for making forecasts in various fields including the financial one, with varying degree of success. In the present article, time-series data of NIFTY50 of the National Stock Exchange (NSE) of India is considered as a reference data. Forecasting of its prices is done by applying the classical Gradient Descent Method (GDM) and by a few herein proposed modifications of it. The modifications are essentially using variants of the mean square error function of the classical GDM. All the proposed variants, Mean median (MMD) error function, Minkowski (MKW) error function, Logcosh (LCH) error function and Cauchy (CCY) error function, result in significant improvement in all the efficacy parameters of forecasting. Two widely varying time horizons, monthly and daily, have been considered. Significant enhancement in forecasting efficacy is obtained with the application of the Modified GDM methods in all the data sets: training, testing and out-of-sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A., Bhatnagar, V.: Concoction of ambient intelligence and big data for better patient ministration services. Int. J. Ambient. Comput. Intell. (IJACI) 8(4), 19–30 (2017)

    Article  Google Scholar 

  2. Kamal, S., Dey, N., Nimmy, S.F., et al.: Evolutionary framework for coding area selection from cancer data. Neural Comput. Appl. 29(4), 1015–1037 (2018)

    Article  Google Scholar 

  3. Dey, N., Wagh, S., Mahalle, P., Pathan, M.: Applied Machine Learning for Smart Data Analysis. CRC Press, Boca Raton (2019). https://doi.org/10.1201/9780429440953

  4. Dey, N., Ashour, A.S., Bhatt, C.: Internet of things driven connected healthcare. In: Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 3–12. Springer, Cham (2017)

    Google Scholar 

  5. Mo, H., Wang, J., Niu, H.: Exponent back propagation neural network forecasting for financial cross-correlation relationship. Expert Syst. Appl. 53, 106–116 (2016)

    Article  Google Scholar 

  6. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  7. Dhar, V.K., Tickoo, A.K., Koul, R., Dubey, B.P.: Comparative performance of some popular ANN algorithms on benchmark and function approximation problems. Pramana 74(2), 307–324 (2010)

    Article  Google Scholar 

  8. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting, 1st edn. Wiley, USA (2008)

    MATH  Google Scholar 

  9. Kim, K.-j., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 19, 125–132 (2000)

    Article  Google Scholar 

  10. Kim, K.-j.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)

    Article  Google Scholar 

  11. Kim, K.-j.: Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Syst. Appl. 30, 519–526 (2006)

    Article  Google Scholar 

  12. Abbasi, E., Abouec, A.: Sock price forecast by using neuro-fuzzy inference system. World Acad. Sci. Eng. Technol. 46, 320–323 (2008)

    Google Scholar 

  13. Atsalakis, G.S., Valavanis, K.P.: Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Syst. Appl. 36, 10696–10707 (2009)

    Article  Google Scholar 

  14. Boyacioglu, M.A., Avci, D.: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst. Appl. 37, 7908–7912 (2010)

    Article  Google Scholar 

  15. Hadavandi, E., Shavandi, H., Ghanbari, A.: Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl.-Based Syst. 23, 800–808 (2010)

    Article  Google Scholar 

  16. Kara, Y., Boyacioglu, M.A., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange. Expert Syst. Appl. 38, 5311–5319 (2011)

    Article  Google Scholar 

  17. Ticknor, J.L.: A Bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl. 40, 5501–5506 (2013)

    Article  Google Scholar 

  18. Moghaddam, A.H., Moghaddam, M.H., Esfandyari, M.: Stock market index prediction using artificial neural network. J. Econ. Financ. Adm. Sci. 21, 89–93 (2016)

    Google Scholar 

  19. Aparna Nayak, M.M., Pai, M., Pai, R.M.: Prediction models for Indian stock market. Proc. Comput. Sci. 89, 441–449 (2016)

    Article  Google Scholar 

  20. Abdulmalik, S., Almasani, M., Finaev, V.I., Qaid, W.A.A., Tychinsky, A.V.: The decision-making model for the stock market under uncertainty. Int. J. Electr. Comput. Eng. (IJECE) 7(5), 2782–2790 (2017)

    Article  Google Scholar 

  21. Devadoss, A.V., Ligori, T.A.A.: Stock prediction using artificial neural networks. Int. J. Data Min. Tech. Appl. 2, 283–291 (2013)

    Google Scholar 

  22. Yetis, Y., Kaplan, H., Jamshidi, M.: Stock market prediction by using artificial neural network. World Automation Congress, pp. 718–722. IEEE Computer Society, U.S. (2014)

    Google Scholar 

  23. Qiu, M., Song, Y., et al.: Application of ANN for prediction of stock market returns: Case of Japanese stock market. Chaos Solitions Fractals 85, 1–7 (2016)

    Google Scholar 

  24. Kamley, S., Jaloree, S., Thakur, R.S.: Performance forecasting of share market using machine learning techniques: a review. Int. J. Electr. Comput. Eng. 6(6), 3196–3204 (2016)

    Article  Google Scholar 

  25. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  26. Atsalakis, G.S., Kimon, P., Valavanis, K.P.: Surveying stock market forecasting techniques—Part II: soft computing methods. Expert Syst. Appl. 36, 5932–5941 (2009)

    Article  Google Scholar 

  27. Reidmiller, M.: Advanced supervised learning in multilayer perceptrons from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces 16, 265–278 (1994)

    Article  Google Scholar 

  28. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)

    Article  Google Scholar 

  29. Marquardt, D.W.: An algorithm for least square estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  Google Scholar 

  30. Lahmiri, S.: A comparative study of backpropagation algorithms in financial prediction. Int. J. Comput. Sci. Eng. Appl. 1(4), 15–21 (2011)

    Google Scholar 

  31. Gangal, A.S., Kalra, P.K., Chauhan, D.S.: Performance evaluation of complex valued neural networks using various error functions. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 1(5), 732–737 (2007)

    Google Scholar 

  32. www.nseindia.com. Accessed 10 April 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Amit Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.A., Thampi, G.T., Rao, M. (2020). Efficacy of a Classical and a Few Modified Machine Learning Algorithms in Forecasting Financial Time Series. In: Dey, N., Mahalle, P., Shafi, P., Kimabahune, V., Hassanien, A. (eds) Internet of Things, Smart Computing and Technology: A Roadmap Ahead. Studies in Systems, Decision and Control, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-39047-1_1

Download citation

Publish with us

Policies and ethics