Skip to main content

Congenital and Hereditary Cataracts: Epidemiology and Genetics

  • Chapter
  • First Online:
Pediatric Cataract Surgery and IOL Implantation

Abstract

Lens opacities or cataracts in children are usually congenital and/or hereditary and less often are secondary to trauma, infections, or systemic disorders such as diabetes or galactosemia. Congenital cataracts cause approximately one-third of blindness in infants worldwide. Between 8% and 25% of congenital cataracts are inherited, and knowledge of their genetic architecture is increasing. Delineating the relationship between the genes and mutations causing cataracts and their phenotypic presentation can help us to understand the biology of the lens and provide a framework for the clinical approach to diagnosis and therapy.

Cataracts (as well as corneal or vitreous opacities) in children must be diagnosed and treated early to prevent permanent vision loss due to amblyopia. In young children, an obvious opacification of the visual axis, inability to follow a hand light consistently, and/or a poor pupillary red reflex on ophthalmoscopy should quickly lead to a referral to an ophthalmologist for further investigation and management. Once a lens opacity has been identified, in addition to prompt surgical management when deemed necessary, a workup for possible cause should be initiated. Establishing a genetic cause of cataract can be helpful in establishing comorbidities, both ocular and systemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedek GB. Theory of transparency of the eye. Appl Opt. 1971;10:459–73.

    Article  CAS  PubMed  Google Scholar 

  2. Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302:415–7.

    Article  CAS  PubMed  Google Scholar 

  3. Vrensen G, Kappelhof J, Willikens B. Aging of the human lens. Lens Eye Toxicol Res. 1990;7:1–30.

    CAS  Google Scholar 

  4. Harding CV, Maisel H, Chylack LT. The structure of the human cataractous lens. In: Maisel H, editor. The ocular lens. New York: Marcel Dekker Inc.; 1985. p. 405–33.

    Google Scholar 

  5. Benedek GB, Chylack LT, Libondi T, Magnante P, Pennett M. Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasielastic light scattering. Curr Eye Res. 1987;6:1421–32.

    Article  CAS  PubMed  Google Scholar 

  6. Bettelheim FA. Physical basis of lens transparency. In: Maisel H, editor. The ocular Lens. New York: Marcil Dekker Inc.; 1985. p. 265–300.

    Google Scholar 

  7. Francois J. Genetics of cataract. Ophthalmologica. 1982;184:61–71.

    Article  CAS  PubMed  Google Scholar 

  8. Merin S. Inherited cataracts. In: Merin S, editor. Inherited eye diseases. New York: Marcel Dekker, Inc.; 1991. p. 86–120.

    Google Scholar 

  9. Haargaard B, Wohlfahrt J, Fledelius HC, Rosenberg T, Melbye M. A nationwide Danish study of 1027 cases of congenital/infantile cataracts: etiological and clinical classifications. Ophthalmology. 2004;111(12):2292–8.

    Article  PubMed  Google Scholar 

  10. Chen J, Wang Q, Cabrera PE, Zhong Z, Sun W, Jiao X, et al. Molecular genetic analysis of Pakistani families with autosomal recessive congenital cataracts by homozygosity screening. Invest Ophthalmol Vis Sci. 2017;58(4):2207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aldahmesh MA, Khan AO, Mohamed JY, Hijazi H, Al-Owain M, Alswaid A, et al. Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med. 2012;14(12):955–62.

    Article  CAS  PubMed  Google Scholar 

  12. Singh MP, Ram J, Kumar A, Khurana J, Marbaniang M, Ratho RK. Infectious agents in congenital cataract in a tertiary care referral center in North India. Diagn Microbiol Infect Dis. 2016;85(4):477–81.

    Article  PubMed  Google Scholar 

  13. Merin S. Congenital cataracts. In: Goldberg MF, editor. Genetic and metabolic eye disease. Boston: Little, Brown, and Co.; 1974. p. 337–55.

    Google Scholar 

  14. Hansen L, Yao W, Eiberg H, Funding M, Riise R, Kjaer KW, et al. The congenital “ant-egg” cataract phenotype is caused by a missense mutation in connexin46. Mol Vis. 2006;12:1033–9.

    CAS  PubMed  Google Scholar 

  15. Riise R. Hereditary “ant-egg-cataract”. Acta Ophthalmol. 1967;45(3):341–6.

    Article  CAS  Google Scholar 

  16. Scott MH, Hejtmancik JF, Wozencraft LA, Reuter LM, Parks MM, Kaiser-Kupfer MI. Autosomal dominant congenital cataract: Interocular phenotypic heterogeneity. Ophthalmology. 1994;101(5):866–71.

    Article  CAS  PubMed  Google Scholar 

  17. Shiels A, Bennett TM, Hejtmancik JF. Cat-map: putting cataract on the map. Mol Vis. 2010;16:2007–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rafferty NS. Lens morphology. In: Maisel H, editor. The ocular lens. New York: Marcel Dekker Inc.; 1985. p. 1–60.

    Google Scholar 

  19. Brown NAP, Bron AJ. Lens Structure. In: Brown NAP, Bron AJ, editors. Lens disorders: a clinical manual of cataract diagnosis. Oxford: Butterworth-Heinemann Ltd.; 1996. p. 32–47.

    Google Scholar 

  20. Goodenough DA, Dick JSB, Lyons JE. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980;86:576–89.

    Article  CAS  PubMed  Google Scholar 

  21. Gorthy WC, Snavely MR, Berrong ND. Some aspects of transport and digestion in the lens of the normal young adult rat. Exp Eye Res. 1971;12:112–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kuszak JR. Embryology and anatomy of the lens. In: Tasman W, Jaeger EA, editors. Duane’s clinical ophthalmology. Philadelphia: J.B. Lippincott; 1990. p. 1–9.

    Google Scholar 

  23. Alcala H, Maisel H. Biochemistry of lens plasma membranes and cytoskeleton. In: Maisel H, editor. The ocular lens. New York: Marcel Dekker Inc.; 1985. p. 169–222.

    Google Scholar 

  24. Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila [see comments]. Science. 1995;267:1788–92.

    Article  CAS  PubMed  Google Scholar 

  25. Mathers PH, Grinberg A, Mahon KA, Jamrich M. The Rx homeobox gene is essential for vertebrate eye development. Nature. 1997;387(6633):603–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hanson I, Churchill A, Love J, Axton R, Moore T, Clarke M, et al. Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations. Hum Mol Genet. 1999;8(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  27. Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991;113:1435–49.

    CAS  PubMed  Google Scholar 

  28. Fujiwara M, Uchida T, Osumi-Yamashita N, Eto K. Uchida rat (rSey): a new mutant rat with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation. 1994;57:31–8.

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H. PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells. 2007;12(9):1049–61.

    Article  CAS  PubMed  Google Scholar 

  30. Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal deletion map of human malformations. Am J Hum Genet. 1998;63(4):1153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burdon KP, McKay JD, Sale MM, Russell-Eggitt IM, Mackey DA, Wirth MG, et al. Mutations in a novel gene, NHS, cause the pleiotropic effects of nance-horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am J Hum Genet. 2003;73(6):1120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bu L, Jin YP, Shi YF, Chu RY, Ban AR, Eiberg H, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet. 2002;31(3):276–8.

    Article  CAS  PubMed  Google Scholar 

  33. Greenlees R, Mihelec M, Yousoof S, Speidel D, Wu SK, Rinkwitz S, et al. Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet. 2015;24(20):5789–804.

    Article  CAS  PubMed  Google Scholar 

  34. Lachke SA, Alkuraya FS, Kneeland SC, Ohn T, Aboukhalil A, Howell GR, et al. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011;331(6024):1571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, et al. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis. 2008;14:2042–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang T, Hua R, Xiao W, Burdon KP, Bhattacharya SS, Craig JE, et al. Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum Mutat. 2009;30(5):E603–E11.

    Article  PubMed  Google Scholar 

  37. Jun G, Guo H, Klein BE, Klein R, Wang JJ, Mitchell P, et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 2009;5(7):e1000584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kaul H, Riazuddin SA, Shahid M, Kousar S, Butt NH, Zafar AU, et al. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis. 2010;16:511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundaresan P, Ravindran RD, Vashist P, Shanker A, Nitsch D, Talwar B, et al. EPHA2 polymorphisms and age-related cataract in India. PLoS One. 2012;7(3):e33001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan W, Hou S, Jiang Z, Hu Z, Yang P, Ye J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol Vis. 2011;17:1553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moreau KL, King JA. Cataract-causing defect of a mutant gamma-crystallin proceeds through an aggregation pathway which bypasses recognition by the alpha-crystallin chaperone. PLoS One. 2012;7(5):e37256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Datiles MB 3rd, Ansari RR, Yoshida J, Brown H, Zambrano AI, Tian J, et al. Longitudinal study of age-related cataract using dynamic light scattering: loss of alpha-crystallin leads to nuclear cataract development. Ophthalmology. 2016;123(2):248–54.

    Article  PubMed  Google Scholar 

  43. Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95–102.

    Article  CAS  PubMed  Google Scholar 

  44. Zampighi GA, Hall JE, Kreman M. Purified lens junctional protein forms channels in planner lipid films. Proc Nat Acad Sci U S A. 1985;82:8468–72.

    Article  CAS  Google Scholar 

  45. Jiang JX, Goodenough DA. Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A. 1996;93:1287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem. 2005;280(49):40788–95.

    Article  CAS  PubMed  Google Scholar 

  47. Berthoud VM, Minogue PJ, Guo J, Williamson EK, Xu X, Ebihara L, et al. Loss of function and impaired degradation of a cataract-associated mutant connexin50. Eur J Cell Biol. 2003;82(5):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pal JD, Liu X, Mackay D, Shiels A, Berthoud VM, Beyer EC, et al. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am J Physiol Cell Physiol. 2000;279(3):C596–602.

    Article  CAS  PubMed  Google Scholar 

  49. Alapure BV, Stull JK, Firtina Z, Duncan MK. The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp Eye Res. 2012;102:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, et al. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci. 2009;50(12):5837–45.

    Article  PubMed  Google Scholar 

  51. Francis P, Chung JJ, Yasui M, Berry V, Moore A, Wyatt MK, et al. Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Hum Mol Genet. 2000;9(15):2329–34.

    Article  CAS  PubMed  Google Scholar 

  52. Pras E, Levy-Nissenbaum E, Bakhan T, Lahat H, Assia E, Geffen-Carmi N, et al. A missense mutation in the LIM2 gene is associated with autosomal recessive Presenile cataract in an inbred Iraqi Jewish family. Am J Hum Genet. 2002;70(5):1363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ponnam SP, Ramesha K, Tejwani S, Matalia J, Kannabiran C. A missense mutation in LIM2 causes autosomal recessive congenital cataract. Mol Vis. 2008;14:1204–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Irum B, Khan SY, Ali M, Kaul H, Kabir F, Rauf B, et al. Mutation in LIM2 is responsible for autosomal recessive congenital cataracts. PLoS One. 2016;11(11):e0162620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Berry V, Gregory-Evans C, Emmett W, Waseem N, Raby J, Prescott D, et al. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur J Hum Genet. 2013;21(12):1356–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prochazkova D, Hruba Z, Konecna P, Skotakova J, Fajkusova L. A p.(Glu809Lys) mutation in the WFS1 gene associated with Wolfram-like syndrome: a case report. J Clin Res Pediatr Endocrinol. 2016;8(4):482–3.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, et al. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med. 2016;4(1):77–94.

    Article  CAS  PubMed  Google Scholar 

  58. Aldahmesh MA, Khan AO, Mohamed JY, Alghamdi MH, Alkuraya FS. Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Hum Mutat. 2012;33(6):960–2.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523(7562):607–11.

    Article  CAS  PubMed  Google Scholar 

  60. Ramachandran RD, Perumalsamy V, Hejtmancik JF. Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum Genet. 2007;121:475–82.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Gao L, Li Z, Qin W, Gao W, Cui X, et al. Progressive sutural cataract associated with a BFSP2 mutation in a Chinese family. Mol Vis. 2006;12:1626–31.

    CAS  PubMed  Google Scholar 

  62. Xia XY, Li N, Cao X, Wu QY, Li TF, Zhang C, et al. A novel COL4A1 gene mutation results in autosomal dominant non-syndromic congenital cataract in a Chinese family. BMC Med Genet. 2014;15:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hansen L, Comyn S, Mang Y, Lind-Thomsen A, Myhre L, Jean F, et al. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet. 2014;22(11):1290–97.

    Google Scholar 

  64. Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, Niikawa N, et al. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007;81(3):596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen JH, Huang C, Zhang B, Yin S, Liang J, Xu C, et al. Mutations of RagA GTPase in mTORC1 pathway are associated with autosomal dominant cataracts. PLoS Genet. 2016;12(6):e1006090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol. 2010;188(2):253–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Ma Z, Jiao X, Fariss R, Kantorow WL, Kantorow M, et al. Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet. 2011;88(6):827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 2013;45(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  69. Pras E, Raz J, Yahalom V, Frydman M, Garzozi HJ, Hejtmancik JF. A nonsense mutation in the Glucosaminyl (N-acetyl) transferase 2 gene (GCNT2): association with autosomal recessive congenital cataracts. Invest Ophthalmol Vis Sci. 2004;45(6):1940–5.

    Article  PubMed  Google Scholar 

  70. Vanita V, Hejtmancik JF, Hennies HC, Guleria K, Nurnberg P, Singh D, et al. Sutural cataract associated with a mutation in the ferritin light chain gene (FTL) in a family of Indian origin. Mol Vis. 2006;12:93–9.

    CAS  PubMed  Google Scholar 

  71. Burdon KP, Sharma S, Chen CS, Dimasi DP, Mackey DA, Craig JE. A novel deletion in the FTL gene causes hereditary hyperferritinemia cataract syndrome (HHCS) by alteration of the transcription start site. Hum Mutat. 2007;28(7):742.

    Article  PubMed  Google Scholar 

  72. Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med. 2017; https://doi.org/10.1038/gim.2017.130.

  73. Zheng C, Wu M, He CY, An XJ, Sun M, Chen CL, et al. RNA granule component TDRD7 gene polymorphisms in a Han Chinese population with age-related cataract. J Int Med Res. 2014;42(1):153–63.

    Article  CAS  PubMed  Google Scholar 

  74. Ma Z, Yao W, Chan CC, Kannabiran C, Wawrousek E, Hejtmancik JF. Human betaA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochim Biophys Acta. 1862;2016:1214–27.

    Google Scholar 

  75. Ma Z, Yao W, Theendakara V, Chan CC, Wawrousek E, Hejtmancik JF. Overexpression of human γC-crystallin 5bp duplication disrupts lens morphology in transgenic mice. Invest Ophthalmol Vis Sci. 2011;52(8):5269–375.

    Article  CAS  Google Scholar 

  76. Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta. 2016;1862(8):1433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andley UP, Goldman JW. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts. Biochim Biophys Acta. 2015;1860(1):234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Watson GW, Andley UP. Activation of the unfolded protein response by a cataract-associated alphaA-crystallin mutation. Biochem Biophys Res Commun. 2010;401(2):192–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel B. Datiles III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoshany, N., Hejtmancik, F., Shiels, A., Datiles, M.B. (2020). Congenital and Hereditary Cataracts: Epidemiology and Genetics. In: Kraus, C. (eds) Pediatric Cataract Surgery and IOL Implantation. Springer, Cham. https://doi.org/10.1007/978-3-030-38938-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38938-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38937-6

  • Online ISBN: 978-3-030-38938-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics