Skip to main content

“Listen Like A Human”—Human-Informed Music Perception Models

  • Chapter
  • First Online:
Book cover Robotic Musicianship

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 8))

  • 523 Accesses

Abstract

One of the main principle guidelines for our Robotic Musicianship research is to develop robots that can “listen like a human and play like a machine.” We would like our robots to be able to understand music as humans so they can connect with their co-players (“listen like a human”) but also surprise and inspire humans with novel music ideas and capabilities (“play like a machine”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/BbyvbO2F7ug.

References

  1. Puckette, Miller S., Miller S. Puckette Ucsd, Theodore Apel, et al. 1998. Real-time audio analysis tools for pd and msp.

    Google Scholar 

  2. Scheirer, Eric D. 1998. Tempo and beat analysis of acoustic musical signals. The Journal of the Acoustical Society of America, 103 (1): 588–601

    Article  Google Scholar 

  3. Desain, Peter, H.J. Honing, et al. 2002. Rhythmic stability as explanation of category size. In Proceedings of the international conference on music perception and cognition, pages CD–rom. Sydney: UNSW

    Google Scholar 

  4. Tanguiane, Andranick S. 1993. Artificial perception and music recognition. Springer

    Google Scholar 

  5. Fred, Lerdahl. 2001. Tonal pitch space.

    Google Scholar 

  6. Eugene, Narmour. 1992. The analysis and cognition of melodic complexity: The implication-realization model. University of Chicago Press.

    Google Scholar 

  7. Elizabeth Hellmuth Margulis. 2005. A model of melodic expectation. Music Perception: An Interdisciplinary Journal 22 (4): 663–714.

    Article  Google Scholar 

  8. Nattiez, Jean-Jacques. 1997. What is the pertinence of the Lerdahl-jackendoff theory? In Perception and cognition of music, 413–419.

    Google Scholar 

  9. Farbood, Morwaread Mary. 2006. A quantitative, parametric model of musical tension. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  10. Lerdahl, Fred, and Carol L. Krumhansl. 2007. Modeling tonal tension. Music Perception: An Interdisciplinary Journal 24 (4): 329–366.

    Article  Google Scholar 

  11. Justus, Timothy C., and Jamshed J. Bharucha. 2001. Modularity in musical processing: The automaticity of harmonic priming. Journal of Experimental Psychology: Human Perception and Performance 27 (4): 1000.

    Google Scholar 

  12. Steinbeis, Nikolaus, Stefan Koelsch, and John A. Sloboda. 2006. The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience 18 (8): 1380–1393.

    Article  Google Scholar 

  13. von Helmholtz, H. 1954. On the sensations of tone (A.J. Ellis, trans.). Braunschweig: Vieweg & Son. (Original work published 1863).

    Google Scholar 

  14. Plomp, Reinier. 1964. Rate of decay of auditory sensation. The Journal of the Acoustical Society of America 36 (2): 277–282.

    Article  Google Scholar 

  15. Hutchinson, William, and Leon Knopoff. 1978. The acoustic component of western consonance. Journal of New Music Research 7 (1): 1–29.

    Google Scholar 

  16. Vassilakis, Pantelis N., and K. Fitz. 2007. Sra: A web-based research tool for spectral and roughness analysis of sound signals. In Proceedings of the 4th sound and music computing (SMC) conference, 319–325.

    Google Scholar 

  17. Simon, Ian, Dan Morris, and Sumit Basu. 2008. Mysong: Automatic accompaniment generation for vocal melodies. In Proceedings of the SIGCHI conference on human factors in computing systems, 725–734. ACM

    Google Scholar 

  18. Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467.

  19. Zen, Heiga, Keiichi Tokuda, and Alan W. Black. 2009. Statistical parametric speech synthesis. Speech Communication 51 (11): 1039–1064.

    Article  Google Scholar 

  20. van den Oord, Aäron, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. 2016. Conditional image generation with pixelCNN decoders. arXiv:1606.05328.

  21. Alexander, Lerch. 2012. An introduction to audio content analysis: Applications in signal processing and music informatics. Wiley.

    Google Scholar 

  22. Puckette, Miller, et al. 1996. Pure data: Another integrated computer music environment. In Proceedings of the second intercollege computer music concerts, 37–41.

    Google Scholar 

  23. Eden, Davies. 2007. Beyond dance: Laban’s legacy of movement analysis. Routledge

    Google Scholar 

  24. Martin Bland, J., and Douglas G. Altman. 1997. Statistics notes: Cronbach’s alpha. BMJ 314 (7080): 572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Weinberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinberg, G., Bretan, M., Hoffman, G., Driscoll, S. (2020). “Listen Like A Human”—Human-Informed Music Perception Models. In: Robotic Musicianship. Automation, Collaboration, & E-Services, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-38930-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38930-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38929-1

  • Online ISBN: 978-3-030-38930-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics