Skip to main content

Constrained Modeling for Efficient Multi-objective Optimization

  • Chapter
  • First Online:
Performance-Driven Surrogate Modeling of High-Frequency Structures

Abstract

This chapter discusses the applications of performance-driven modeling framework to low-cost multi-objective design of high-frequency structures. It is a matter of fact that vast majority of practical engineering problems are multi-objective ones. Although in most practical cases various scalarization strategies are employed for the sake of simplicity (e.g., to enable application of single-objective optimization routines), at times, genuine multi-objective treatment is necessary. A typical scenario is the need for generating the best possible trade-offs between conflicting objectives, which permits comprehensive evaluation of a given structure, e.g., from the point of view of its suitability for a selected application area. Two constrained modeling methodologies, namely, the triangulation-based and nested kriging modeling techniques, are adopted for solving multi-objective design tasks, i.e., identification of the Pareto sets, in a computationally efficient manner. Real-world high-frequency design cases are considered to demonstrate the efficacy of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov, N. M., & Lewis, R. M. (2001). An overview of first-order model management for engineering optimization. Optical Engineering, 2(4), 413–430.

    Article  Google Scholar 

  • Alsath, M. G. N., & Kanagasabai, M. (2015). Compact UWB monopole antenna for automotive communications. IEEE Transactions on Antennas and Propagation, 63(9), 4204–4208.

    Article  Google Scholar 

  • Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. (2007). Evolutionary algorithms for solving multi-objective problems (2nd ed.). Springer.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: John Wiley & Sons.

    MATH  Google Scholar 

  • Fonseca, C. M. (1995). Multiobjective genetic algorithms with application to control engineering problems. PhD thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, UK.

    Google Scholar 

  • Gembicki, F. (1974). Vector Optimization for Control with Performance and Parameter Sensitivity Indices. PhD thesis, Case Western Reserve University.

    Google Scholar 

  • Kaneda, N., Deal, W. R., Qian, Y., Waterhouse, R., & Itoh, T. (2002). A broad-band planar quasi Yagi antenna. IEEE Transactions on Antennas and Propagation, 50(8), 1158–1160.

    Article  Google Scholar 

  • Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707–716.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2015a). Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions. IEEE Antennas and Wireless Propagation Letters, 14, 1681–1684.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2015b). Computationally-efficient multi-objective optimization of antenna structures using point-by-point Pareto set identification and local approximation surrogates. IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization. RF, Microwave, THz App., Pilsen.

    Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2016a). Multi-objective design of antennas using surrogate models. Singapore: World Scientific.

    MATH  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2016b). Rapid simulation-driven multi-objective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 64(8), 2454–2461.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2016c). Rapid multiobjective antenna design using point-by-point Pareto set identification and local surrogate models. IEEE Transactions on Antennas and Propagation, 64(6), 2551–2556.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., & Ogurtsov, S. (2013). Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Transactions on Antennas and Propagation, 61(12), 5931–5939.

    Article  Google Scholar 

  • Koziel, S., & Pietrenko-Dabrowska, A. (2019a). Performance-based nested surrogate modeling of antenna input characteristics. IEEE Transactions on Antennas and Propagation, 67(5), 2904–2912.

    Article  Google Scholar 

  • Koziel, S., & Pietrenko-Dabrowska, A. (2019b). Fast multi-objective antenna optimization by means of nested kriging surrogates. APC 2019, IET’s Antennas and Propagation Conference. Birmingham.

    Google Scholar 

  • Koziel, S., & Sigurðsson, A. T. (2018). Multi-fidelity EM simulations and constrained surrogate modelling for low-cost multi-objective design optimisation of antennas. IET Microwaves, Antennas & Propagation, 12(13), 2025–2029.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S., Couckuyt, I., & Dhaene, T. (2013). Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas. IEEE Transactions on Antennas and Propagation, 61(3), 1301–1308.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., Ogurtsov, S., Zieniutycz, W., & Sorokosz, L. (2014). Simulation-driven design of microstrip antenna subarrays. IEEE Transactions on Antennas and Propagation, 62(7), 3584–3591.

    Article  Google Scholar 

  • Koziel, S., Bekasiewicz, A., Couckuyt, I., & Dhaene, T. (2014). Efficient multi-objective simulation-driven antenna design using co-kriging. IEEE Transactions on Antennas and Propagation, 62(11), 5900–5905.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., Bekasiewicz, A., & Zieniutycz, W. (2014). Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Antennas and Wireless Propagation Letters, 13, 631–634.

    Article  Google Scholar 

  • Koziel, S., Bekasiewicz, A., & Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave and Wireless Components Letters, 25(5), 277–279.

    Article  Google Scholar 

  • Koziel, S., Bekasiewicz, A., Kurgan, P., & Bandler, J. W. (2016). Rapid multi-objective design optimisation of compact microwave couplers by means of physics-based surrogates. IET Microwaves Antennas & Propagation, 10(5), 479–486.

    Article  Google Scholar 

  • Koziel, S., Bekasiewicz, A., & Szczepanski, S. (2018). Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation. International Journal of RF and Microwave Computer-Aided Engineering, 28(5), e21253.

    Article  Google Scholar 

  • Lalbakhsh, A., Afzal, M. U., & Esselle, K. P. (2017). Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Antennas and Wireless Propagation Letters, 16, 912–915.

    Article  Google Scholar 

  • Long, Q., Wu, C., Huang, T., & Wang, X. (2015). A genetic algorithm for unconstrained multi-objective optimization. Swarm and Evolutionary Computation, 22, 1–14.

    Article  Google Scholar 

  • Nedjah, N., & Mourelle, L. M. (2015). Evolutionary multi-objective optimisation: A survey. International Journal of Bio-Inspired Computation, 7(1), 1–25.

    Article  Google Scholar 

  • Suryawanshi, D. R., & Singh, B. A. (2014). A compact UWB rectangular slotted monopole antenna. IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1130–1136.

    Google Scholar 

  • Talbi, E.-G. (2009). Metaheuristics: From design to implementation. Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  • Tan, K., Khor, E., & Lee, T. (2005). Multiobjective evolutionary algorithms and applications. London: Springer.

    MATH  Google Scholar 

  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koziel, S., Pietrenko-Dabrowska, A. (2020). Constrained Modeling for Efficient Multi-objective Optimization. In: Performance-Driven Surrogate Modeling of High-Frequency Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-38926-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38926-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38925-3

  • Online ISBN: 978-3-030-38926-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics