Skip to main content

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity

  • Conference paper
  • First Online:
Book cover SOFSEM 2020: Theory and Practice of Computer Science (SOFSEM 2020)

Abstract

This paper considers a game in which a single cop and a single robber take turns moving along the edges of a given graph G. If there exists a strategy for the cop which enables it to be positioned at the same vertex as the robber eventually, then G is called cop-win, and robber-win otherwise. In contrast to previous work, we study this classical combinatorial game on edge-periodic graphs. These are graphs with an infinite lifetime comprised of discrete time steps such that each edge e is assigned a bit pattern of length \(l_e\), with a 1 in the i-th position of the pattern indicating the presence of edge e in the i-th step of each consecutive block of \(l_e\) steps. Utilising the known framework of reachability games, we obtain an \(O(\textsf {LCM}(L)\cdot n^3)\) time algorithm to decide if a given n-vertex edge-periodic graph \(G^\tau \) is cop-win or robber-win as well as compute a strategy for the winning player (here, L is the set of all edge pattern lengths \(l_e\), and \(\textsf {LCM}(L)\) denotes the least common multiple of the set L). For the special case of edge-periodic cycles, we prove an upper bound of \(2\cdot l \cdot \textsf {LCM}(L)\) on the minimum length required of any edge-periodic cycle to ensure that it is robber-win, where \(l = 1\) if \(\textsf {LCM}(L) \ge 2\cdot \max L \), and \(l=2\) otherwise. Furthermore, we provide constructions of edge-periodic cycles that are cop-win and have length \(1.5 \cdot \textsf {LCM}(L)\) in the \(l=1\) case and length \(3\cdot \textsf {LCM}(L)\) in the \(l=2\) case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1), 1–12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. Appl. Math. 14(4), 389–403 (1993). https://doi.org/10.1006/aama.1993.1019

    Article  MathSciNet  MATH  Google Scholar 

  3. Berwanger, D.: Graph games with perfect information. arXiv:1407.1647 (2013)

  4. Bonato, A., MacGillivray, G.: A general framework for discrete-time pursuit games (2015). Unpublished manuscript

    Google Scholar 

  5. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs, Student Mathematical Library, vol. 61. American Mathematical Society, Providence (2011). https://doi.org/10.1090/stml/061

    Book  MATH  Google Scholar 

  6. Casteigts, A.: A Journey Through Dynamic Networks (with Excursions). Habilitation à diriger des recherches, University of Bordeaux, June 2018. https://tel.archives-ouvertes.fr/tel-01883384

  7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22450-8_27

    Chapter  Google Scholar 

  8. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robot. 31(4), 299–316 (2011). https://doi.org/10.1007/s10514-011-9241-4

    Article  Google Scholar 

  9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. Springer, New York (2002). https://doi.org/10.1007/3-540-36387-4

    Book  MATH  Google Scholar 

  10. Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discret. Math. 306(19), 2492–2497 (2006). https://doi.org/10.1016/j.disc.2005.12.038. Creation and Recreation: A Tribute to the Memory of Claude Berge

    Article  MathSciNet  Google Scholar 

  11. Kehagias, A., Konstantinidis, G.: Cops and robbers, game theory and Zermelo’s early results. arXiv:1407.1647 (2014)

  12. Kehagias, A., Mitsche, D., Pralat, P.: The role of visibility in pursuit/evasion games. Robotics 4, 371–399 (2014)

    Article  Google Scholar 

  13. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016). https://doi.org/10.1080/15427951.2016.1177801

    Article  MathSciNet  Google Scholar 

  14. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun. ACM 61(2), 72–72 (2018). https://doi.org/10.1145/3156693

    Article  Google Scholar 

  15. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math. 43(2), 235–239 (1983). https://doi.org/10.1016/0012-365X(83)90160-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs, pp. 426–441. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0070400

    Chapter  Google Scholar 

  17. Patsko, V., Kumkov, S., Turova, V.: Pursuit-evasion games. In: Basar, T., Zaccour, G. (eds.) Handbook of Dynamic Game Theory, pp. 1–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-27335-8-30-1

    Chapter  Google Scholar 

  18. Quilliot, A.: Jeux et pointes fixes sur les graphes. Ph.D. thesis, University of Paris VI (1978)

    Google Scholar 

  19. Rankin, B.A.: Ramanujan: Twelve lectures on subjects suggested by his life and work. Math. Gaz. 45(352), 166 (1961). https://doi.org/10.1017/S0025557200044892

    Article  Google Scholar 

  20. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993). https://doi.org/10.1006/jctb.1993.1027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maciej Gazda for helpful discussions regarding reachability games, as well as an anonymous reviewer for a suggestion leading to the running-time for the variant with k cops mentioned at the end of Sect. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob T. Spooner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erlebach, T., Spooner, J.T. (2020). A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38919-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38918-5

  • Online ISBN: 978-3-030-38919-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics