Skip to main content

Fuzzy Normed Linear Spaces

  • Chapter
  • First Online:
Recent Developments in Fuzzy Logic and Fuzzy Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 391))

  • 390 Accesses

Abstract

In this chapter we will present different concepts of fuzzy norms on a linear space, introduced by various authors from different points of view. Thus, in 1984, Katsaras was the first who introduced the notion of fuzzy norm, this being of Minkowsky type, associated to an absolutely convex and absorbing fuzzy set. In 1992, Felbin introduced another ideea of fuzzy norm, by assigning a fuzzy real number to each element of the linear space. Following Cheng and Mordeson, in 2003, Bag and Samanta proposed another concept of fuzzy norm, which will be proven most adequate, even if it can be still improved, simplified or generalized. In this context, this chapter will contain the results obtained by Nădăban and Dzitac in the paper “Atomic decomposition of fuzzy normed linear spaces for wavelet applications”. We also note that a new concept of fuzzy norm was introduced by Saadati and Vaezpour, in 2005. The concept of fuzzy norm has been generalized to continuous t-norm by Goleţ in 2010. Recently, Alegre and Romaguera proposed the term of fuzzy quasi-norm and Nădăban introduced the notion of fuzzy pseudo-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Alegre, S. Romaguera, Characterizations of fuzzy metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-)norms. Fuzzy Sets Syst. 161, 2182–2192 (2010)

    Article  MathSciNet  Google Scholar 

  2. T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11, 687–705 (2003)

    MathSciNet  MATH  Google Scholar 

  3. T. Bag, S.K. Samanta, Fuzzy bounded linear operators. Fuzzy Sets Syst. 151, 513–547 (2005)

    Article  MathSciNet  Google Scholar 

  4. T. Bag, S.K. Samanta, Fixed point theorems on fuzzy normed linear spaces. Inform. Sci. 176, 2910–2931 (2006)

    Article  MathSciNet  Google Scholar 

  5. T. Bag, S.K. Samanta, Some fixed point theorems in fuzzy normed linear spaces. Inform. Sci. 177, 3217–3289 (2007)

    Article  MathSciNet  Google Scholar 

  6. T. Bag, S.K. Samanta, A comparative study of fuzzy norms on a linear space. Fuzzy Sets Syst. 159, 670–684 (2008)

    Article  MathSciNet  Google Scholar 

  7. T. Bînzar, F. Pater, S. Nădăban, On fuzzy normed algebras. J. Nonlinear Sci. Appl. 9, 5488–5496 (2016)

    Article  MathSciNet  Google Scholar 

  8. S.C. Cheng, J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86, 429–436 (1994)

    MathSciNet  MATH  Google Scholar 

  9. R.K. Das, B. Mandal, Fuzzy real line structure and metric space. Indian J. pure appl. Math. 33, 565–571 (2002)

    MathSciNet  MATH  Google Scholar 

  10. D. Dubois, H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)

    Article  MathSciNet  Google Scholar 

  11. D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications (Academic Press, London, 1980)

    MATH  Google Scholar 

  12. I. Dzitac, The fuzzyfication of classical structures: A general view. Int. J. Comput. Commun. Control 10, 772–788 (2015)

    Google Scholar 

  13. I. Dzitac, F.G. Filip, M.J. Manolescu, Fuzzy logic is not fuzzy: World—Renowned computer scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 12, 748–789 (2017)

    Article  Google Scholar 

  14. C. Felbin, Finite dimensional fuzzy normed liniar space. Fuzzy Sets Syst. 48, 239–248 (1992)

    Article  MathSciNet  Google Scholar 

  15. A. George, P. Veeramani, On some results in fuzzy metric spaces. Fuzzy Sets and Syst. 64, 395–399 (1994)

    Article  MathSciNet  Google Scholar 

  16. I. Goleţ, On generalized fuzzy normed spaces and coincidence point theorems. Fuzzy Sets and Syst. 161, 1138–1144 (2010)

    Article  MathSciNet  Google Scholar 

  17. V. Gregori, S. Romaguera, Some properties of fuzzy metric space. Fuzzy Sets Syst. 115, 485–489 (2000)

    Article  MathSciNet  Google Scholar 

  18. Hadžić, O, Pap, E, in Fixed Point Theory in Probabilistic Metric Spaces, vol. 536. Mathematics and Its Applications (Kluwer, Dordrecht, 2001)

    Chapter  Google Scholar 

  19. M. Janfada, H. Baghani, O. Baghani, On Felbin’s-type fuzzy normed linear spaces and fuzzy bounded operators. Iran. J. Fuzzy Syst. 8, 117–130 (2011)

    MathSciNet  MATH  Google Scholar 

  20. O. Kaleva, S. Seikkala, On fuzzy metric spaces. Fuzzy Sets Syst. 12, 215–229 (1984)

    Article  Google Scholar 

  21. A.K. Katsaras, D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces. J. Math. Anal. Appl. 58, 135–146 (1977)

    Article  MathSciNet  Google Scholar 

  22. A.K. Katsaras, Fuzzy topological vector spaces I. Fuzzy Sets Syst. 6, 85–95 (1981)

    Article  MathSciNet  Google Scholar 

  23. A.K. Katsaras, Fuzzy topological vector spaces II. Fuzzy Sets Syst. 12, 143–154 (1984)

    Article  MathSciNet  Google Scholar 

  24. E.P. Klement, R. Mesiar, E. Pap, in Triangular Norms. (Kluwer, 2000)

    Google Scholar 

  25. I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)

    MathSciNet  MATH  Google Scholar 

  26. A.K. Mirmostafaee, A. Kamel, Perturbation of generalized derivations in fuzzy Menger normed algebras. Fuzzy Sets Syst. 195, 109–117 (2012)

    Article  MathSciNet  Google Scholar 

  27. M. Mizumoto, J. Tanaka, Some properties of fuzzy numbers, in Advances in Fuzzy Set Theory and Applications, ed. by M.M. Gupta, et al. (North-Holland, New York, 1979), pp. 153–164

    Google Scholar 

  28. S. Nădăban, Fuzzy euclidean normed spaces for data mining applications. Int. J. Comput. Commun. Control. 10(1), 70–77 (2015)

    Article  Google Scholar 

  29. S. Nădăban, Fuzzy continuous mappings in fuzzy normed linear spaces. Int. J. Comput. Commun. Control 10, 834–842 (2015)

    Article  Google Scholar 

  30. S. Nădăban, Fuzzy pseudo-norms and fuzzy F-spaces. Fuzzy Sets Syst. 282, 99–114 (2016)

    Article  MathSciNet  Google Scholar 

  31. S. Nădăban, T. Bînzar, F. Pater, Some fixed point theorems for \(\varphi \)-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 10, 5668–5676 (2017)

    Article  MathSciNet  Google Scholar 

  32. S. Nădăban, T. Bînzar, F. Pater, C. Ţerei, S. Hoară, Katsaras’s type fuzzy norm under triangular norms. Theory Appl. Math. Comput. Sci. 5, 148–157 (2015)

    MathSciNet  MATH  Google Scholar 

  33. S. Nădăban, I. Dzitac, Atomic decompositions of fuzzy normed linear spaces for wavelet applications. Informatica 25, 643–662 (2014)

    Article  MathSciNet  Google Scholar 

  34. R. Saadati, P. Kumam, S.Y. Jang, On the tripled fixed point and tripled coincidence point theorems in fuzzy normed spaces. Fixed Point Theory Appl. (2014). https://doi.org/10.1186/1687-1812-2014-136

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Saadati, S.M. Vaezpour, Some results on fuzzy Banach spaces. J. Appl. Math. Comput. 17, 475–484 (2005)

    Article  MathSciNet  Google Scholar 

  36. I. Sadeqi, A. Amiripour, in Fuzzy Banach algebra. First Joint Congress on Fuzzy and Intelligent Systems, Fedowsi University of Mashhad, Iran, 29–31 Aug 2007

    Google Scholar 

  37. I. Sadeqi, F.S. Kia, Fuzzy normed linear space and its topological structure. Chaos Solitons Fractals 40, 2576–2589 (2009)

    Article  MathSciNet  Google Scholar 

  38. B. Schweizer, A. Sklar, Statistical metric spaces. Pac. J. Math. 10, 314–334 (1960)

    MathSciNet  MATH  Google Scholar 

  39. J.Z. Xiao, X.H. Zhu, On linearly topological structures and property of fuzzy normed linear space. Fuzzy Sets Syst. 125, 153–161 (2002)

    Article  MathSciNet  Google Scholar 

  40. J.Z. Xiao, X.H. Zhu, Topological degree theory and fixed point theorems in fuzzy normed spaces. Fuzzy Sets Syst. 147, 437–452 (2004)

    Article  MathSciNet  Google Scholar 

  41. L.A. Zadeh, Fuzzy Sets. Inform. Control 8, 338–353 (1965)

    Article  MathSciNet  Google Scholar 

  42. L.A. Zadeh, Is there a need for fuzzy logic? Inform. Sci. 178, 2751–2779 (2008)

    Article  MathSciNet  Google Scholar 

  43. J. Zhu, Y. Wang, C.C. Zhu, Fixed point theorems for contractions in fuzzy normed spaces and intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-79

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Dzitac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nădăban, S., Dzitac, S., Dzitac, I. (2020). Fuzzy Normed Linear Spaces. In: Shahbazova, S., Sugeno, M., Kacprzyk, J. (eds) Recent Developments in Fuzzy Logic and Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-030-38893-5_8

Download citation

Publish with us

Policies and ethics