Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 858 Accesses

Abstract

This chapter presents linearization techniques for multiband and broadband operations on system as well as algorithm levels. The chapter highlights the limitations of the established digital predistortion (DPD) linearization techniques for broadband transmission. To alleviate these limitations of conventional DPD schemes, the hybrid predistortion techniques are presented in detail, which take advantage of best features of “analog” as well as “digital” processing domains. Predistortion techniques rely on accurate characterization of intermodulation distortion (IMD) terms and their precise control can mitigate the nonlinearity in the PA. However, Delta-sigma technique is further presented for high-efficiency switched-mode PA applications, where amplitude is kept constant by converting the signal into pulses to drive the high-efficiency switched-mode PAs. Keeping with the discussion of high efficiency, linearization challenges for multiband envelop tracking application is also presented and various digital techniques are compared in terms of linearization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.

    Article  Google Scholar 

  2. Bassam, S. A., Chen, W., Helaoui, M., & Ghannouchi, F. M. (2013). Transmitter architecture for CA: Carrier aggregation in LTE-advanced systems. IEEE Microwave Magazine, 14(5), 78–86.

    Article  Google Scholar 

  3. Saad, P., Colantonio, P., Piazzon, L., Giannini, F., Andersson, K., & Fager, C. (2012). Design of a concurrent dual-band 1.8–2.4-GHz GaN-HEMT Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1840–1849.

    Article  Google Scholar 

  4. Rawat, K., & Ghannouchi, F. M. (2012). Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines. IEEE Transactions on Industrial Electronics, 59(12), 4831–4842.

    Article  Google Scholar 

  5. Liu, R., Schreurs, D., De Raedt, W., Vanaverbeke, F., & Mertens, R. (2011). Concurrent dual-band power amplifier with different operation modes. IEEE MTT-S International Microwave Symposium Digest, pp. 1–4.

    Google Scholar 

  6. Wang, Z., & Park, C.-W. (2012). Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks. Proceedings of IEEE Wireless Microwave Technology Conference (WAMICON), pp. 1–4.

    Google Scholar 

  7. Nghiem, X. A., & Negra, R. (2012). Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier. Asia Pacific Microwave Conference Proceedings (APMC), pp. 364–366.

    Google Scholar 

  8. Kwan, A. K., et al. (2014). Concurrent multi-band envelope modulated power amplifier linearized using extended phase-aligned DPD. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3298–3308.

    Article  Google Scholar 

  9. Younes, M., Kwan, A., Rawat, M., & Ghannouchi, F. M. (2013). Linearization of concurrent tri-band transmitters using 3-D phase-aligned pruned Volterra model. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4569–4578.

    Article  Google Scholar 

  10. LTE. (2013). Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (release 11).

    Google Scholar 

  11. Liu, Y., Roblin, P., Yu, H., Shao, S., & Tang, Y. (2015). Novel multiband linearization technique for closely-spaced dual-band signals of wide bandwidth. IEEE MTT-S International Microwave Symposium Digest, pp. 1–4.

    Google Scholar 

  12. Rawat, M., Roblin, P., Quindroit, C., Salam, K., & Xie, C. (2015). Concurrent dual-band modeling and digital predistortion in the presence of unfilterable harmonic signal interference. IEEE Transactions on Microwave Theory and Techniques, 63(2), 95–104.

    Article  Google Scholar 

  13. Jaraut, P., Rawat, M., & Ghannouchi, F. M. (2018). Harmonically related concurrent tri-band behavioral modeling and digital predistortion. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), 1073–1077.

    Article  Google Scholar 

  14. Mehmood, Y., Haider, N., Imran, M., Timm-Giel, A., & Guizani, M. (2017). M2M communications in 5G: State-of-the-art architecture, recent advances, and research challenges. IEEE Communications Magazine, 55(9), 194–201.

    Article  Google Scholar 

  15. Checko, A., et al. (2015). Cloud RAN for mobile networks-a technology overview. IEEE Communication Surveys and Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  16. Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2018). Toward an efficient C-RAN optical Fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communication Surveys and Tutorials, 20(1), 708–769.

    Article  Google Scholar 

  17. Qian, H. J., Liang, J. O., & Luo, X. (2016). Wideband digital power amplifiers with efficiency improvement using 40-nm LP CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 64(3), 675–687.

    Article  Google Scholar 

  18. Park, J. S., Wang, Y., Pellerano, S., Hull, C., & Wang, H. (2018). A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE Journal of Solid-State Circuits, 53(2), 340–356.

    Article  Google Scholar 

  19. MB86L11A 2G/3G/4G LTE Transceiver, fujitsu. (2018). Retrieved from https://www.fujitsu.com/downloads/MICRO/fswp/pdf/products/FSWP_RFT_MB86L11A_FS.pdf.

  20. Tripathi, G. C., Rawat, M., & Roblin, P. (2019). Harmonic cancellation technique for ultra-wideband filter-less 5G. 93rd ARFTG microwave measurement conference, Boston, MA.

    Google Scholar 

  21. Rawat, M., Roblin, P., Quindroit, C., Salam, K., & Xie, C. (2014). Digitally supported feed-forward harmonic cancellation for filter-less ultra-wideband transmitters. IEEE International Microwave and RF Conference, Bangalore, India, pp. 84–87.

    Google Scholar 

  22. Yu, H., Ratnasamy, V., Roblin, P., Rawat, M., & Xie, C. (2015). Automatic feed-forward cancelation of modulated harmonic. IEEE 86th ARFTG microwave measurement conference, pp. 1–3.

    Google Scholar 

  23. Samulak, A., Fischer, G., &Weigel, R. (2008). Demonstrator of Class-S Power Amplifier based on GaN transistors. IEEE German Microwaves Conference (GeMIC).

    Google Scholar 

  24. Morgan, D. R. (2013). A three-state signal coding scheme for high efficiency class-S amplifiers. IEEE Transactions on Circuits and Systems-I, 60(7), 1681–1691.

    Article  MathSciNet  Google Scholar 

  25. Aggrawal, E., Rawat, K., & Roblin, P. (2017). Investigating continuous class-F power amplifier using nonlinear embedding model. Microwave and Wireless Components Letters, 27, 593–595.

    Article  Google Scholar 

  26. Li, Y., Montgomery, B. J., & Neihart, N. M.. (2016). Development of a concurrent dual-band switch-mode power amplifier based on current-switching class-D configuration. IEEE Wireless and Microwave Technology Conference (WAMICON).

    Google Scholar 

  27. Kumar, N., Datt Poonia, J., & Rawat, K. (2017). Class S power amplifier based on CSCD with delta-sigma modulation. 2017 IEEE applied electromagnetics conference, AEMC, Aurangabad, pp. 1–2.

    Google Scholar 

  28. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2009). Efficiency enhancement of a WiMAX switching mode GaN power amplifier through layout optimization of distributed harmonic matching networks. Proc. IEEE European Microwave Conference, pp. 1732–1735.

    Google Scholar 

  29. Johnson, T., & Stapleton, S. P. (2006). RF class-D amplification with bandpass sigma–delta modulator drive signals. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2507–2520.

    Article  Google Scholar 

  30. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2013). Delta-sigma-based transmitters: Advantages and disadvantages. IEEE Microwave Magazine, 14(1), 68–78.

    Article  Google Scholar 

  31. Nielsen, M., & Larsen, T. (2007). A transmitter architecture based on delta–sigma modulation and switch-mode power amplification. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(8), 735–739.

    Article  Google Scholar 

  32. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2011). Time-interleaved delta-sigma modulator for wideband digital GHz transmitters design and SDR applications. Journal of Progress Electromagnetics Research B, 34, 263–281.

    Article  Google Scholar 

  33. Ghannouchi, F. M., Hatami, S., Aflaki, P., Helaoui, M., & Negra, R. (2010). Accurate power efficiency estimation of GHz wireless delta sigma transmitters for different classes of switching mode power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2812–2819.

    Article  Google Scholar 

  34. Kumar, N., & Rawat, K. (2018). Delta sigma modulation based digital transmitter for single and dual band transmission. IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, pp. 1–4.

    Google Scholar 

  35. Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters. Piscataway, NJ: IEEE Press.

    Google Scholar 

  36. Aziz, P. M., Sorensen, H. V., & Spiegel, J. (1996). An overview of sigma-delta converters. IEEE Signal Processing Magazine, 13(1), 61–84.

    Article  Google Scholar 

  37. Jouzdani, M., Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2017). Complex delta–sigma-based transmitter with enhanced linearity performance using pulsed load modulation power amplifier. IEEE Transactions on Microwave Theory and Techniques, 65(9), 3324–3335.

    Article  Google Scholar 

  38. Cordeiro, R. F., Prata, A., Oliveira, A. S. R., Vieira, J. M. N., & De Carvalho, N. B. (2017). Agile all-digital RF transceiver implemented in FPGA. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4229–4240.

    Article  Google Scholar 

  39. Ebrahimi, M. M., & Helaoui, M. (2013). Reducing quantization noise to boost efficiency and signal bandwidth in delta–sigma-based transmitters. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4245–4251.

    Article  Google Scholar 

  40. Grebennikov, A. (2011). RF and microwave transmitter design (1st ed.). New York: Wiley.

    Book  Google Scholar 

  41. Zhu, Q., Ma, R., Duan, C., Teo, K. H., & Parsons, K. (2014). A 5-level discrete-time power encoder with measured coding efficiency of 70% for 20-MHz LTE digital transmitter. IEEE MTT-S International Microwave Symposium.

    Google Scholar 

  42. Podsiadlik, T., Dooley, J., & Farrell, R. (2018). Analysis of 3-level bandpass sigma-delta modulators with 2-level output. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(4), 506–510.

    Article  Google Scholar 

  43. Elsayed, F., & Helaoui, M. (2013). Linearized multi-level Δ Σ modulated wireless transmitters for SDR applications using simple DLGA algorithm. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(4), 594–601.

    Article  Google Scholar 

  44. Kumar, N., & Rawat, K. (2017). Efficiency enhancement in delta-sigma modulator based transmitter using level transformation. IEEE MTT-S International Microwave and RF Conference (IMaRC), Ahmedabad, pp. 1–5.

    Google Scholar 

  45. Singh, R., Tripathi, G. C., & Rawat, M. (2015). Performance analysis of multilevel delta sigma modulators for 3G/4G communication. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), Allahabad, pp. 1–5.

    Google Scholar 

  46. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2012). Improving coding efficiency by compromising linearity in delta-sigma based transmitters. IEEE Radio and Wireless Symposium, pp. 411–414.

    Google Scholar 

  47. Hu, Y., & Boumaiza, S. (2016). Power scalable wideband linearization of power amplifier. IEEE Transactions on Microwave Theory and Techniques, 64(5), 1456–1464.

    Article  Google Scholar 

  48. Gumber, K., & Rawat, M. (2017). A modified hybrid RF Predistorter linearizer for ultra wideband 5G systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(4), 547–557.

    Article  Google Scholar 

  49. Gumber, K., & Rawat, M. (2018). Low cost RFin-RFout predistorter linearizer for high power amplifier and ultra-wideband signals. IEEE Transactions on Instrumentation and Measurement, 67(9), 2069–2081.

    Article  Google Scholar 

  50. Rawat, K., Rawat, M., & Ghannouchi, F. M. (2010). Compensating I-Q imperfections in hybrid RF/ digital predistortion with adapted look up table implemented in FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(5), 389–393.

    Article  Google Scholar 

  51. Jaraut, P., & Rawat, M. (2017). 3D generalized coefficient supported model for concurrent dual-band digital predistortion of envelope tracking power amplifier. IEEE MTT-S International Microwave & RF Conference, Ahmedabad, India, pp. 1–4.

    Google Scholar 

  52. Gilabert, P., & Montoro, G. (2015). 3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization. IEEE Transactions on Microwave Theory and Techniques, 63(2), 638–648.

    Article  Google Scholar 

  53. Cidronali, A., Giovannelli, N., Mercanti, M., Maddio, S., & Manes, G. (2013). Concurrent dual-band envelope tracking GaN PA design and its 2d shaping function characterization. International Journal of Microwave and Wireless Technology, 5, 669–681.

    Article  Google Scholar 

  54. Gilabert, P., Montoro, G., Lopez, D., & Garcia, J. (2013). 3D digital predistortion for dual-band envelope tracking power amplifiers. Proceedings of Asia–Pacific Microwave Conference, pp. 734–736.

    Google Scholar 

  55. Kwan, A., Younes, M., Zhang, S., Chen, W., Darraji, R., Helaoui, M., & Ghannouchi, F. M. (2014). Dual-band predistortion linearization of an envelope modulated power amplifier operated in concurrent multi-standard mode. IEEE MTT–S International Microwave Symposium Digest, Tampa Bay, FL, pp. 1–4.

    Google Scholar 

  56. Bassam, S., Helaoui, M., & Ghannouchi, F. (2011). 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(10), 2547–2553.

    Article  Google Scholar 

  57. Liu, Y. J., Zhou, J., Chen, W., Zhou, B., & Ghannouchi, F. M. (2012). Low complexity 2D behavioural model for concurrent dual-band power amplifiers. Electronics Letters, 48(11), 620–621.

    Article  Google Scholar 

  58. Ding, L., Yang, Z., & Gandhi, H., Concurrent dual-band digital predistortion. IEEE MTT-S International Microwave Symposium Digest, Montreal, Canada, pp. 1–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, K., Roblin, P., Koul, S.K. (2020). Digital Techniques for Broadband and Linearized Transmitters. In: Bandwidth and Efficiency Enhancement in Radio Frequency Power Amplifiers for Wireless Transmitters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-38866-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38866-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38865-2

  • Online ISBN: 978-3-030-38866-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics