Skip to main content

The Immune Landscape in Women Cancers

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 180))

Abstract

In this chapter, we summarize the latest findings in the field of immuno-oncology of women cancers, particularly ovarian and breast tumors. We describe the relationship between immune parameters and clinical outcomes by evaluating the contribution of different players of the tumor microenvironment, with a particular focus on different immune cell subsets and their essential role during the development of the disease, the response to standard chemotherapy, and to emerging immunotherapeutic approaches. By reviewing the molecular and genetic features of ovarian and breast cancer subtypes, we report on the multitude of factors influencing treatment outcome, with a particular interest on the possible influence of the immune system (i.e., tumor infiltrating lymphocytes, T cells, regulatory T cells, myeloid-derived suppressor cells, dendritic cells, macrophages, B cells, tumor-associated neutrophils). Finally, we discuss emerging immune targets and novel therapeutic modalities that are likely to profoundly influence clinical outcome and prognosis of breast and ovarian cancers in the next future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salani R, Kurman RJ, Giuntoli R 2nd, Gardner G, Bristow R, Wang TL, Shih IM (2008) Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer 18(3):487ā€“491. https://doi.org/10.1111/j.1525-1438.2007.01039.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Christie M, Oehler MK (2006) Molecular pathology of epithelial ovarian cancer. J Br Menopause Soc 12(2):57ā€“63. https://doi.org/10.1258/136218006777525794

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Koshiyama M, Matsumura N, Konishi I (2017) Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics (Basel) 7(1). https://doi.org/10.3390/diagnostics7010012

  4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359ā€“E386. https://doi.org/10.1002/ijc.29210

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115ā€“132. https://doi.org/10.3322/caac.21338

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Cancer Facts & FiguresĀ 2018 (2018). American cancer society Atlanta: American Cancer Society

    Google ScholarĀ 

  7. Nguyen HN, Averette HE, Janicek M (1994) Ovarian carcinoma. A review of the significance of familial risk factors and the role of prophylactic oophorectomy in cancer prevention. Cancer 74(2):545ā€“555

    Google ScholarĀ 

  8. Malander S, Ridderheim M, Masback A, Loman N, Kristoffersson U, Olsson H, Nilbert M, Borg A (2004) One in 10 ovarian cancer patients carry germ line BRCA1 or BRCA2 mutations: results of a prospective study in Southern Sweden. Eur J Cancer 40(3):422ā€“428

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE (1994) Risks of cancer in BRCA1-mutation carriers. Breast cancer linkage consortium. Lancet 343(8899):692ā€“695

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjakoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117ā€“1130. https://doi.org/10.1086/375033

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Lakhani SR, Manek S, Penault-Llorca F, Flanagan A, Arnout L, Merrett S, McGuffog L, Steele D, Devilee P, Klijn JG, Meijers-Heijboer H, Radice P, Pilotti S, Nevanlinna H, Butzow R, Sobol H, Jacquemier J, Lyonet DS, Neuhausen SL, Weber B, Wagner T, Winqvist R, Bignon YJ, Monti F, Schmitt F, Lenoir G, Seitz S, Hamman U, Pharoah P, Lane G, Ponder B, Bishop DT, Easton DF (2004) Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. Clin Cancer Res 10(7):2473ā€“2481

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Reid BM, Permuth JB, Sellers TA (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14(1):9ā€“32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, Vincent-Salomon A, Mechta-Grigoriou F (2018) miR200-regulated CXCL12beta promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun 9(1):1056. https://doi.org/10.1038/s41467-018-03348-z

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinovyev A, Givel AM, Parrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463e410ā€“479e410. https://doi.org/10.1016/j.ccell.2018.01.011

  15. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960ā€“1964. https://doi.org/10.1126/science.1129139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Piconese S, Timperi E, Pacella I, Schinzari V, Tripodo C, Rossi M, Guglielmo N, Mennini G, Grazi GL, Di Filippo S, Brozzetti S, Fazzi K, Antonelli G, Lozzi MA, Sanchez M, Barnaba V (2014) Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue. Hepatology 60(5):1494ā€“1507. https://doi.org/10.1002/hep.27188

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Timperi E, Pacella I, Schinzari V, Focaccetti C, Sacco L, Farelli F, Caronna R, Del Bene G, Longo F, Ciardi A, Morelli S, Vestri AR, Chirletti P, Barnaba V, Piconese S (2016) Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer. Oncoimmunology 5(7):e1175800. https://doi.org/10.1080/2162402X.2016.1175800

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Toker A, Nguyen LT, Stone SC, Yang SYC, Katz SR, Shaw PA, Clarke BA, Ghazarian D, Al-Habeeb A, Easson A, Leong WL, McCready DR, Reedijk M, Guidos CJ, Pugh TJ, Bernardini MQ, Ohashi PS (2018) Regulatory T cells in ovarian cancer are characterized by a highly activated phenotype distinct from that in melanoma. Clin Cancer Res 24(22):5685ā€“5696. https://doi.org/10.1158/1078-0432.CCR-18-0554

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ā€‰regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942ā€“949. https://doi.org/10.1038/nm1093

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Webb JR, Milne K, Nelson BH (2015) PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol Res 3(8):926ā€“935. https://doi.org/10.1158/2326-6066.CIR-14-0239

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ā€‰tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102(51):18538ā€“18543. https://doi.org/10.1073/pnas.0509182102

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Lieber S, Reinartz S, Raifer H, Finkernagel F, Dreyer T, Bronger H, Jansen JM, Wagner U, Worzfeld T, Muller R, Huber M (2018) Prognosis of ovarian cancer is associated with effector memory CD8(+) T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. Oncoimmunology 7(5):e1424672. https://doi.org/10.1080/2162402X.2018.1424672

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58(3):449ā€“459. https://doi.org/10.1007/s00262-008-0583-5

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Aust S, Bachmayr-Heyda A, Pils D, Zhao L, Tong W, Berger A, Fogel M, Thalhammer T, Sehouli J, Horvat R, Zeillinger R, Castillo-Tong DC (2013) Determination of tumor-infiltrating CD8+ā€‰lymphocytes in human ovarian cancer. Int J Gynecol Pathol 32(3):269ā€“276. https://doi.org/10.1097/PGP.0b013e31826a63f8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Pinto MP, Balmaceda C, Bravo ML, Kato S, Villarroel A, Owen GI, Roa JC, Cuello MA, Ibanez C (2018) Patient inflammatory status and CD4+/CD8+ā€‰intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. Gynecol Oncol 151(1):10ā€“17. https://doi.org/10.1016/j.ygyno.2018.07.025

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Bohm S, Dowe T, Wilkes EH, Chakravarty P, Thompson R, Topping J, Cutillas PR, Lockley M, Serody JS, Capasso M, Balkwill FR (2017) A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin Cancer Res 23(1):250ā€“262. https://doi.org/10.1158/1078-0432.CCR-16-0081

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, Allavena P, Sozzani S, Mantovani A, Balkwill FR (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95(5):2391ā€“2396. https://doi.org/10.1172/JCI117933

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Montalban Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wockel A, Dietl J, Lutz MB, Mittelbronn M, Wischhusen J, Hausler SFM (2016) Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophagesā€”a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 4:49. https://doi.org/10.1186/s40425-016-0154-9

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Torroella-Kouri M, Silvera R, Rodriguez D, Caso R, Shatry A, Opiela S, Ilkovitch D, Schwendener RA, Iragavarapu-Charyulu V, Cardentey Y, Strbo N, Lopez DM (2009) Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res 69(11):4800ā€“4809. https://doi.org/10.1158/0008-5472.CAN-08-3427

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Wang X, Deavers M, Patenia R, Bassett RL Jr, Mueller P, Ma Q, Wang E, Freedman RS (2006) Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J Transl Med 4:30. https://doi.org/10.1186/1479-5876-4-30

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12(3):259ā€“267. https://doi.org/10.7785/tcrt.2012.500312

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, Di W (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 7:19. https://doi.org/10.1186/1757-2215-7-19

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Zhu Q, Wu X, Wu Y, Wang X (2016) Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep 36(6):3472ā€“3478. https://doi.org/10.3892/or.2016.5136

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Colvin EK (2014) Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol 4:137. https://doi.org/10.3389/fonc.2014.00137

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63(3):247ā€“257. https://doi.org/10.1007/s00262-013-1508-5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Rodriguez-Ubreva J, Catala-Moll F, Obermajer N, Alvarez-Errico D, Ramirez RN, Company C, Vento-Tormo R, Moreno-Bueno G, Edwards RP, Mortazavi A, Kalinski P, Ballestar E (2017) Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived Suppressor cells. Cell Rep 21(1):154ā€“167. https://doi.org/10.1016/j.celrep.2017.09.018

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Taki M, Abiko K, Baba T, Hamanishi J, Yamaguchi K, Murakami R, Yamanoi K, Horikawa N, Hosoe Y, Nakamura E, Sugiyama A, Mandai M, Konishi I, Matsumura N (2018) Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun 9(1):1685. https://doi.org/10.1038/s41467-018-03966-7

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Bohm S, Montfort A, Pearce OM, Topping J, Chakravarty P, Everitt GL, Clear A, McDermott JR, Ennis D, Dowe T, Fitzpatrick A, Brockbank EC, Lawrence AC, Jeyarajah A, Faruqi AZ, McNeish IA, Singh N, Lockley M, Balkwill FR (2016) Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res 22(12):3025ā€“3036. https://doi.org/10.1158/1078-0432.CCR-15-2657

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Turner TB, Buchsbaum DJ, Straughn JM Jr, Randall TD, Arend RC (2016) Ovarian cancer and the immune systemā€”the role of targeted therapies. Gynecol Oncol 142(2):349ā€“356. https://doi.org/10.1016/j.ygyno.2016.05.007

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573ā€“1577. https://doi.org/10.1126/science.1208347

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Mesnage SJL, Auguste A, Genestie C, Dunant A, Pain E, Drusch F, Gouy S, Morice P, Bentivegna E, Lhomme C, Pautier P, Michels J, Le Formal A, Cheaib B, Adam J, Leary AF (2017) Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann Oncol 28(3):651ā€“657. https://doi.org/10.1093/annonc/mdw625

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Odunsi K (2017) Immunotherapy in ovarian cancer. Ann Oncol 28 (suppl_8):viii1ā€“viii7. https://doi.org/10.1093/annonc/mdx444

  44. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ (2013) Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res 1(1):11ā€“15. https://doi.org/10.1158/2326-6066.CIR-13-0022

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Ledermann JA, Santin A, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer MJ, Provencher DM, Sehouli J, Colombo N, GonzĆ”lez-MartĆ­n A, Oaknin A, Ottevanger PB, Rudaitis V, Cristescu R, Kobie J, Ruman J, Matulonis UA (2018) Association of PD-L1 expression and gene expression profiling with clinical response to pembrolizumab in patients with advanced recurrent ovarian cancer. Ann Oncol 29:424ā€“043

    Google ScholarĀ 

  46. Armstrong DK, White AJ, Weil SC, Phillips M, Coleman RL (2013) Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol Oncol 129(3):452ā€“458. https://doi.org/10.1016/j.ygyno.2013.03.002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Jakobs TC, Schmutzler C, Meissner J, Kohrle J (1997) The promoter of the human type I 5ā€™-deiodinase geneā€“mapping of the transcription start site and identification of a DR+ā€‰4 thyroid-hormone-responsive element. Eur J Biochem 247(1):288ā€“297

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J (2018) NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol 9:947. https://doi.org/10.3389/fimmu.2018.00947

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Chu CS, Schullery DS, Gimotty PA, Gamerman V, Bender J, Levine BL, Coukos G, Rubin SC, Morgan MA, Vonderheide RH, June CH (2012) Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother 61(65):629ā€“641. doi:https://doi.org/10.1007/s00262-011-1081-8

  50. Tanyi BS, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ Jr, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE (2018) Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 10(436). doi:https://doi.org/10.1126/scitranslmed.aao5931

  51. Brueseke TJ, Tewari KS (2013) Toll-like receptor 8: augmentation of innate immunity in platinum resistant ovarian carcinoma. Clin Pharmacol 5:13ā€“19. https://doi.org/10.2147/CPAA.S40401

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7ā€“34. https://doi.org/10.3322/caac.21551

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. Marchio C, Balmativola D, Castiglione R, Annaratone L, Sapino A (2017) Predictive diagnostic pathology in the target therapy era in breast cancer. Curr Drug Targets 18(1):4ā€“12

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ (2012) WHO classification of tumours WHO classification of tumours of the breast, 4th edn, vol 4

    Google ScholarĀ 

  55. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403ā€“410

    Google ScholarĀ 

  56. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan PH, Tse GM, Badve S, Ellis IO (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12(4):207. https://doi.org/10.1186/bcr2607

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262ā€“272. https://doi.org/10.1093/jnci/djj052

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, Harris A, Goss P, Sotiriou C, Erlander M, Sgroi D (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14(9):2601ā€“2608. https://doi.org/10.1158/1078-0432.CCR-07-5026

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784ā€“2795. https://doi.org/10.1200/JCO.2009.25.6529

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36(20):2105ā€“2122. https://doi.org/10.1200/JCO.2018.77.8738

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Tan DS, Marchio C, Reis-Filho JS (2008) Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol 61(10):1073ā€“1082. https://doi.org/10.1136/jcp.2008.057950

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Cheang MC, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, Ruiz A, Chia S, Shepherd L, Ruiz-Borrego M, Calvo L, Alba E, Carrasco E, Caballero R, Tu D, Pritchard KI, Levine MN, Bramwell VH, Parker J, Bernard PS, Ellis MJ, Perou CM, Di Leo A, Carey LA (2015) Defining breast cancer intrinsic subtypes by quantitative receptor expression. Oncologist 20(5):474ā€“482. https://doi.org/10.1634/theoncologist.2014-0372

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, Ueno NT, Zhang J, Shi W, Qi Y, Matsuoka J, Yang EJ, Hortobagyi GN, Hatzis C, Symmans WF, Pusztai L (2012) Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol 30(7):729ā€“734. https://doi.org/10.1200/JCO.2011.36.2574

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  64. Yi M, Huo L, Koenig KB, Mittendorf EA, Meric-Bernstam F, Kuerer HM, Bedrosian I, Buzdar AU, Symmans WF, Crow JR, Bender M, Shah RR, Hortobagyi GN, Hunt KK (2014) Which threshold for ER positivity? A retrospective study based on 9639 patients. Ann Oncol 25(5):1004ā€“1011. https://doi.org/10.1093/annonc/mdu053

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Annaratone LSI, MarchiĆ² C (2018) HER2 in breast cancer. Encycl Pathol. https://doi.org/10.1007/978-3-319-28845-1_4710-1

    ArticleĀ  Google ScholarĀ 

  66. Bertucci F, Finetti P, Roche H, Le Doussal JM, Marisa L, Martin AL, Lacroix-Triki M, Blanc-Fournier C, Jacquemier J, Peyro-Saint-Paul H, Viens P, Sotiriou C, Birnbaum D, Penault-Llorca F (2013) Comparison of the prognostic value of genomic grade index, Ki67 expression and mitotic activity index in early node-positive breast cancer patients. Ann Oncol 24(3):625ā€“632. https://doi.org/10.1093/annonc/mds510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Luporsi E, Andre F, Spyratos F, Martin PM, Jacquemier J, Penault-Llorca F, Tubiana-Mathieu N, Sigal-Zafrani B, Arnould L, Gompel A, Egele C, Poulet B, Clough KB, Crouet H, Fourquet A, Lefranc JP, Mathelin C, Rouyer N, Serin D, Spielmann M, Haugh M, Chenard MP, Brain E, de Cremoux P, Bellocq JP (2012) Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res Treat 132(3):895ā€“915. https://doi.org/10.1007/s10549-011-1837-z

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JM, Gown AM, Symmans WF, Piper T, Mehl E, Enos RA, Hayes DF, Dowsett M, Nielsen TO, International Ki67 in Breast Cancer Working Group of the Breast International G, North American Breast Cancer G (2013) An international Ki67 reproducibility study. J Natl Cancer Inst 105(24):1897ā€“1906. https://doi.org/10.1093/jnci/djt306

  69. Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS (2015) Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 107(5). https://doi.org/10.1093/jnci/djv015

  70. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747ā€“752. https://doi.org/10.1038/35021093

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869ā€“10874. https://doi.org/10.1073/pnas.191367098

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN, Harris LN, Ollila DW, Krop IE, Henry NL, Weckstein DJ, Anders CK, Singh B, Hoadley KA, Iglesia M, Cheang MC, Perou CM, Winer EP, Hudis CA (2016) Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol 34(6):542ā€“549. https://doi.org/10.1200/JCO.2015.62.1268

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS (2016) Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2:16036. https://doi.org/10.1038/npjbcancer.2016.36

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11(6):e0157368. https://doi.org/10.1371/journal.pone.0157368

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750ā€“2767. https://doi.org/10.1172/JCI45014

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688ā€“1698. https://doi.org/10.1158/1078-0432.CCR-14-0432

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, vanā€™t Veer LJ, Perou CM (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355(6):560ā€“569. https://doi.org/10.1056/nejmoa052933

  78. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schutz F, Goldstein DR, Piccart M, Delorenzi M (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65. https://doi.org/10.1186/bcr2124

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Cardoso F, vanā€™t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, Knox S, Matos E, Meulemans B, Neijenhuis PA, Nitz U, Passalacqua R, Ravdin P, Rubio IT, Saghatchian M, Smilde TJ, Sotiriou C, Stork L, Straehle C, Thomas G, Thompson AM, van der Hoeven JM, Vuylsteke P, Bernards R, Tryfonidis K, Rutgers E, Piccart M, Investigators M (2016) 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375(8):717ā€“729. https://doi.org/10.1056/nejmoa1602253

  80. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379(2):111ā€“121. https://doi.org/10.1056/NEJMoa1804710

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA Jr, Zujewski J, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin P, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Atkins JN, Berenberg JL, Sledge GW (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373(21):2005ā€“2014. https://doi.org/10.1056/NEJMoa1510764

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202ā€“209. https://doi.org/10.1038/nature13480

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395ā€“399. https://doi.org/10.1038/nature10933

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DW, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Borresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479. https://doi.org/10.1038/ncomms11479

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49(1):22ā€“34. https://doi.org/10.1111/j.1365-2559.2006.02453.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ā€‰lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949ā€“1955. https://doi.org/10.1200/JCO.2010.30.5037

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  87. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjanen K (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A(4ā€“5):859ā€“864

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  88. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, Loi S (2016) Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 13(4):228ā€“241. https://doi.org/10.1038/nrclinonc.2015.215

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. MarchiĆ² GFC, Reis-Filho JS (2016) Pathology and molecular pathology of breast cancer. Pathol Epidemiol Cancer 173ā€“231

    Google ScholarĀ 

  90. Wein L, Savas P, Luen SJ, Virassamy B, Salgado R, Loi S (2017) Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: current and future directions. Front Oncol 7:156. https://doi.org/10.3389/fonc.2017.00156

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2(10):1354ā€“1360. https://doi.org/10.1001/jamaoncol.2016.1061

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  92. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860ā€“867. https://doi.org/10.1200/JCO.2011.41.0902

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, Twelves C, Bartlett JM, Mahmoud SM, Rakha E, Ellis IO, Liu S, Gao D, Nielsen TO, Pharoah PD, Caldas C (2014) Association between CD8+ā€‰T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol 25(8):1536ā€“1543. https://doi.org/10.1093/annonc/mdu191

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, von Torne C, Weichert W, Engels K, Solbach C, Schrader I, Dietel M, von Minckwitz G (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105ā€“113. https://doi.org/10.1200/JCO.2009.23.7370

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, Schem C, Fisch K, Darb-Esfahani S, Mehta K, Sotiriou C, Wienert S, Klare P, Andre F, Klauschen F, Blohmer JU, Krappmann K, Schmidt M, Tesch H, Kummel S, Sinn P, Jackisch C, Dietel M, Reimer T, Untch M, Loibl S (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983ā€“991. https://doi.org/10.1200/JCO.2014.58.1967

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  96. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 1(4):448ā€“454. https://doi.org/10.1001/jamaoncol.2015.0830

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, Goubar A (2015) Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 26(8):1698ā€“1704. https://doi.org/10.1093/annonc/mdv239

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544ā€“1550. https://doi.org/10.1093/annonc/mdu112

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959ā€“2966. https://doi.org/10.1200/JCO.2013.55.0491

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S (2019) Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol JCO1801010. https://doi.org/10.1200/jco.18.01010

  101. Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, Baehner FL (2016) Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol 2(1):56ā€“64. https://doi.org/10.1001/jamaoncol.2015.3239

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  102. Oā€™Loughlin M, Andreu X, Bianchi S, Chemielik E, Cordoba A, Cserni G, Figueiredo P, Floris G, Foschini MP, Heikkila P, Kulka J, Liepniece-Karele I, Regitnig P, Reiner A, Ryska A, Sapino A, Shalaby A, Stovgaard ES, Quinn C, Walsh EM, Zolota V, Glynn SA, Callagy G (2018) Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study. Breast Cancer Res Treat 171(1):1ā€“9. https://doi.org/10.1007/s10549-018-4825-8

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  103. Swisher SK, Wu Y, Castaneda CA, Lyons GR, Yang F, Tapia C, Wang X, Casavilca SA, Bassett R, Castillo M, Sahin A, Mittendorf EA (2016) Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the international TILs working group. Ann Surg Oncol 23(7):2242ā€“2248. https://doi.org/10.1245/s10434-016-5173-8

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  104. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GM, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, Network TR, Perou CM (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506ā€“519. https://doi.org/10.1016/j.cell.2015.09.033

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, Fumagalli D, Brown D, Rothe F, Vincent D, Kheddoumi N, Rouas G, Majjaj S, Brohee S, Van Loo P, Maisonneuve P, Salgado R, Van Brussel T, Lambrechts D, Bose R, Metzger O, Galant C, Bertucci F, Piccart-Gebhart M, Viale G, Biganzoli E, Campbell PJ, Sotiriou C (2016) Genomic characterization of primary invasive lobular breast cancer. J Clin Oncol 34(16):1872ā€“1881. https://doi.org/10.1200/JCO.2015.64.0334

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Michaut M, Chin SF, Majewski I, Severson TM, Bismeijer T, de Koning L, Peeters JK, Schouten PC, Rueda OM, Bosma AJ, Tarrant F, Fan Y, He B, Xue Z, Mittempergher L, Kluin RJ, Heijmans J, Snel M, Pereira B, Schlicker A, Provenzano E, Ali HR, Gaber A, Oā€™Hurley G, Lehn S, Muris JJ, Wesseling J, Kay E, Sammut SJ, Bardwell HA, Barbet AS, Bard F, Lecerf C, Oā€™Connor DP, Vis DJ, Benes CH, McDermott U, Garnett MJ, Simon IM, Jirstrom K, Dubois T, Linn SC, Gallagher WM, Wessels LF, Caldas C, Bernards R (2016) Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Sci Rep 6:18517. https://doi.org/10.1038/srep18517

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  107. Du T, Zhu L, Levine KM, Tasdemir N, Lee AV, Vignali DAA, Houten BV, Tseng GC, Oesterreich S (2018) Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci Rep 8(1):7205. https://doi.org/10.1038/s41598-018-25357-0

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  108. Guiu S, Wolfer A, Jacot W, Fumoleau P, Romieu G, Bonnetain F, Fiche M (2014) Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions? Crit Rev Oncol Hematol 92(3):235ā€“257. https://doi.org/10.1016/j.critrevonc.2014.07.003

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  109. Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, Holmberg SB, Lindtner J, Snyder R, Thurlimann B, Murray E, Viale G, Castiglione-Gertsch M, Coates AS, Goldhirsch A, International Breast Cancer Study G (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26 (18):3006ā€“3014. https://doi.org/10.1200/jco.2007.14.9336

  110. Desmedt C, Salgado R, Fornili M, Pruneri G, Van den Eynden G, Zoppoli G, Rothe F, Buisseret L, Garaud S, Willard-Gallo K, Brown D, Bareche Y, Rouas G, Galant C, Bertucci F, Loi S, Viale G, Di Leo A, Green AR, Ellis IO, Rakha EA, Larsimont D, Biganzoli E, Sotiriou C (2018) Immune infiltration in invasive lobular breast cancer. J Natl Cancer Inst 110(7):768ā€“776. https://doi.org/10.1093/jnci/djx268

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  111. Althobiti M, Aleskandarany MA, Joseph C, Toss M, Mongan N, Diez-Rodriguez M, Nolan CC, Ashankyty I, Ellis IO, Green AR, Rakha EA (2018) Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology 73(6):887ā€“896. https://doi.org/10.1111/his.13695

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  112. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothe F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873ā€“2892. https://doi.org/10.1172/JCI67428

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  113. Lee AH, Happerfield LC, Bobrow LG, Millis RR (1997) Angiogenesis and inflammation in invasive carcinoma of the breast. J Clin Pathol 50(8):669ā€“673

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  114. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO (2012) CD8+ā€‰lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14(2):R48. https://doi.org/10.1186/bcr3148

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  115. West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH (2011) Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res 13(6):R126. https://doi.org/10.1186/bcr3072

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  116. Shou J, Zhang Z, Lai Y, Chen Z, Huang J (2016) Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ā€‰Tregs: a systematic review and meta-analysis. BMC Cancer 16:687. https://doi.org/10.1186/s12885-016-2732-0

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  117. Marchio C, Sapino A (2011) The pathologic complete response open question in primary therapy. J Natl Cancer Inst Monogr 43:86ā€“90. https://doi.org/10.1093/jncimonographs/lgr025

    ArticleĀ  Google ScholarĀ 

  118. Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, Ficarra G, Mathieu MC, Delaloge S, Curigliano G, Andre F (2014) Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 25(3):611ā€“618. https://doi.org/10.1093/annonc/mdt556

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  119. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, Sanchez V, Sanders ME, Cook RS, Pilkinton MA, Mallal SA, Wang K, Miller VA, Stephens PJ, Yelensky R, Doimi FD, Gomez H, Ryzhov SV, Darcy PK, Arteaga CL, Balko JM (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22(6):1499ā€“1509. https://doi.org/10.1158/1078-0432.CCR-15-1125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  120. Luen SJ, Salgado R, Dieci MV, Vingiani A, Curigliano G, Gould RE, Castaneda C, Dā€™Alfonso T, Sanchez J, Cheng E, Andreopoulou E, Castillo M, Adams S, Demaria S, Symmans WF, Michiels S, Loi S (2018) Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple negative breast cancer patients after neo-adjuvant chemotherapy. Ann Oncol. https://doi.org/10.1093/annonc/mdy547

    ArticleĀ  Google ScholarĀ 

  121. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, Buzdar AU, Singletary SE, Hortobagyi GN, Pusztai L (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414ā€“4422. https://doi.org/10.1200/JCO.2007.10.6823

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  122. Hamy AS, Pierga JY, Sabaila A, Laas E, Bonsang-Kitzis H, Laurent C, Vincent-Salomon A, Cottu P, Lerebours F, Rouzier R, Lae M, Reyal F (2017) Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive residual disease and lower disease-free survival in HER2-positive breast cancer. Ann Oncol 28(9):2233ā€“2240. https://doi.org/10.1093/annonc/mdx309

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  123. Pruneri G, Lazzeroni M, Bagnardi V, Tiburzio GB, Rotmensz N, DeCensi A, Guerrieri-Gonzaga A, Vingiani A, Curigliano G, Zurrida S, Bassi F, Salgado R, Van den Eynden G, Loi S, Denkert C, Bonanni B, Viale G (2017) The prevalence and clinical relevance of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in situ of the breast. Ann Oncol 28(2):321ā€“328. https://doi.org/10.1093/annonc/mdw623

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29(3):249ā€“258. https://doi.org/10.1038/modpathol.2015.158

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  125. Campbell MJ, Baehner F, Oā€™Meara T, Ojukwu E, Han B, Mukhtar R, Tandon V, Endicott M, Zhu Z, Wong J, Krings G, Au A, Gray JW, Esserman L (2017) Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat 161(1):17ā€“28. https://doi.org/10.1007/s10549-016-4036-0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  126. Dieci MV, Radosevic-Robin N, Fineberg S, van den Eynden G, Ternes N, Penault-Llorca F, Pruneri G, Dā€™Alfonso TM, Demaria S, Castaneda C, Sanchez J, Badve S, Michiels S, Bossuyt V, Rojo F, Singh B, Nielsen T, Viale G, Kim SR, Hewitt S, Wienert S, Loibl S, Rimm D, Symmans F, Denkert C, Adams S, Loi S, Salgado R, International Immuno-Oncology Biomarker Working Group on Breast C (2018) Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol 52(Pt 2):16ā€“25. doi:10.1016/j.semcancer.2017.10.003

    Google ScholarĀ 

  127. Knopfelmacher A, Fox J, Lo Y, Shapiro N, Fineberg S (2015) Correlation of histopathologic features of ductal carcinoma in situ of the breast with the oncotype DX DCIS score. Mod Pathol 28(9):1167ā€“1173. https://doi.org/10.1038/modpathol.2015.79

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  128. Gardner A, Ruffell B (2016) Dendritic cells and cancer immunity. Trends Immunol 37(12):855ā€“865. https://doi.org/10.1016/j.it.2016.09.006

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  129. Lee H, Lee HJ, Song IH, Bang WS, Heo SH, Gong G, Park IA (2018) CD11c-positive dendritic cells in triple-negative breast cancer. In Vivo 32(6):1561ā€“1569. https://doi.org/10.21873/invivo.11415

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  130. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C, Lebecque S (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10(22):7466ā€“7474. https://doi.org/10.1158/1078-0432.CCR-04-0684

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  131. Mohammed ZM, Going JJ, Edwards J, McMillan DC (2012) The role of the tumour inflammatory cell infiltrate in predicting recurrence and survival in patients with primary operable breast cancer. Cancer Treat Rev 38(8):943ā€“955. https://doi.org/10.1016/j.ctrv.2012.04.011

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  132. Bense RD, Sotiriou C, Piccart-Gebhart MJ, Haanen J, van Vugt M, de Vries EGE, Schroder CP, Fehrmann RSN (2017) Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. J Natl Cancer Inst 109(1). https://doi.org/10.1093/jnci/djw192

  133. Shou D, Wen L, Song Z, Yin J, Sun Q, Gong W (2016) Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget 7(39):64505ā€“64511. https://doi.org/10.18632/oncotarget.11352

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  134. Toor SM, Syed Khaja AS, El Salhat H, Faour I, Kanbar J, Quadri AA, Albashir M, Elkord E (2017) Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunol Immunother 66(6):753ā€“764. https://doi.org/10.1007/s00262-017-1977-z

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  135. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49ā€“59. https://doi.org/10.1007/s00262-008-0523-4

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  136. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: ā€œN1ā€ versus ā€œN2ā€ TAN. Cancer Cell 16(3):183ā€“194. https://doi.org/10.1016/j.ccr.2009.06.017

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  137. Wang Y, Chen JN, Yang L, Li J, Wu W, Huang M, Lin L, Su S (2018) Tumor-contacted neutrophils promote metastasis by a CD90-TIMP-1 juxtacrine-paracrine loop. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-2544

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  138. Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528(7582):413ā€“417. https://doi.org/10.1038/nature16140

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  139. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Kuttner V, Bruzas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JT, Egeblad M (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361(6409). https://doi.org/10.1126/science.aao4227

  140. Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ (2005) Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J Surg Oncol 91(3):181ā€“184. https://doi.org/10.1002/jso.20329

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  141. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):dju124. https://doi.org/10.1093/jnci/dju124

  142. Uribe-Querol E, Rosales C (2015) Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015:983698. https://doi.org/10.1155/2015/983698

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  143. Ethier JL, Desautels D, Templeton A, Shah PS, Amir E (2017) Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: a systematic review and meta-analysis. Breast Cancer Res 19(1):2. https://doi.org/10.1186/s13058-016-0794-1

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  144. Chen Y, Chen K, Xiao X, Nie Y, Qu S, Gong C, Su F, Song E (2016) Pretreatment neutrophil-to-lymphocyte ratio is correlated with response to neoadjuvant chemotherapy as an independent prognostic indicator in breast cancer patients: a retrospective study. BMC Cancer 16:320. https://doi.org/10.1186/s12885-016-2352-8

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  145. Curigliano G, Burstein HJ, E PW, Gnant M, Dubsky P, Loibl S, Colleoni M, Regan MM, Piccart-Gebhart M, Senn HJ, Thurlimann B, St. Gallen International Expert Consensus on the Primary Therapy of Early Breast C, Andre F, Baselga J, Bergh J, Bonnefoi H, S YB, Cardoso F, Carey L, Ciruelos E, Cuzick J, Denkert C, Di Leo A, Ejlertsen B, Francis P, Galimberti V, Garber J, Gulluoglu B, Goodwin P, Harbeck N, Hayes DF, Huang CS, Huober J, Hussein K, Jassem J, Jiang Z, Karlsson P, Morrow M, Orecchia R, Osborne KC, Pagani O, Partridge AH, Pritchard K, Ro J, Rutgers EJT, Sedlmayer F, Semiglazov V, Shao Z, Smith I, Toi M, Tutt A, Viale G, Watanabe T, Whelan TJ, Xu B (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol 28(8):1700ā€“1712. https://doi.org/10.1093/annonc/mdx308

  146. Emens LA (2018) Breast cancer immunotherapy: facts and hopes. Clin Cancer Res 24(3):511ā€“520. https://doi.org/10.1158/1078-0432.CCR-16-3001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  147. Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, Boccia R, Lippman ME, Somer R, Smakal M, Emens LA, Hrinczenko B, Edenfield W, Gurtler J, von Heydebreck A, Grote HJ, Chin K, Hamilton EP (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167(3):671ā€“686. https://doi.org/10.1007/s10549-017-4537-5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  148. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, Kuter I, Nanda R, Cassier PA, Delord JP, Gordon MS, ElGabry E, Chang CW, Sarkar I, Grossman W, Oā€™Hear C, Fasso M, Molinero L, Schmid P (2018) Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.4224

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  149. Kok M, Winer EP, Loi S (2019) Passion for immune checkpoint blockade in triple negative breast cancer: comment on the IMpassion130 study. Ann Oncol 30(1):13ā€“16. https://doi.org/10.1093/annonc/mdy473

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  150. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74ā€“88. https://doi.org/10.1016/j.immuni.2013.06.014

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  151. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, Investigators IMT (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108ā€“2121. https://doi.org/10.1056/NEJMoa1809615

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  152. Adams S, Loi S, Toppmeyer D, Cescon DW, De Laurentiis M, Nanda R, Winer EP, Mukai H, Tamura K, Armstrong A, Liu MC, Iwata H, Ryvo L, Wimberger P, Rugo HS, Tan AR, Jia L, Ding Y, Karantza V, Schmid P (2018) Title: pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase 2 KEYNOTE-086 study. Ann Oncol. https://doi.org/10.1093/annonc/mdy518

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  153. Nathan MR, Schmid P (2018) The emerging world of breast cancer immunotherapy. Breast 37:200ā€“206. https://doi.org/10.1016/j.breast.2017.05.013

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  154. Sanchez K, Page D, McArthur HL (2016) Immunotherapy in breast cancer: an overview of modern checkpoint blockade strategies and vaccines. Curr Probl Cancer 40(2ā€“4):151ā€“162. https://doi.org/10.1016/j.currproblcancer.2016.09.009

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  155. McArthur HL, Diab A, Page DB, Yuan J, Solomon SB, Sacchini V, Comstock C, Durack JC, Maybody M, Sung J, Ginsberg A, Wong P, Barlas A, Dong Z, Zhao C, Blum B, Patil S, Neville D, Comen EA, Morris EA, Kotin A, Brogi E, Wen YH, Morrow M, Lacouture ME, Sharma P, Allison JP, Hudis CA, Wolchok JD, Norton L (2016) A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 22(23):5729ā€“5737. https://doi.org/10.1158/1078-0432.CCR-16-0190

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  156. Clifton GT, Gall V, Peoples GE, Mittendorf EA (2016) Clinical development of the E75 vaccine in breast cancer. Breast Care (Basel) 11(2):116ā€“121. https://doi.org/10.1159/000446097

    ArticleĀ  Google ScholarĀ 

  157. Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23(30):7536ā€“7545. https://doi.org/10.1200/JCO.2005.03.047

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  158. Morgan MA, Schambach A (2018) Chimeric antigen receptor T cells: extending translation from liquid to solid tumors. Hum Gene Ther 29(10):1083ā€“1097. https://doi.org/10.1089/hum.2017.251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  159. Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K (2017) Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol 10(1):78. https://doi.org/10.1186/s13045-017-0444-9

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  160. Gallo S, Sangiolo D, Carnevale Schianca F, Aglietta M, Montemurro F (2017) Treating breast cancer with cell-based approaches: an overview. Expert Opin Biol Ther 17(10):1255ā€“1264. https://doi.org/10.1080/14712598.2017.1356816

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  161. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843ā€“851. https://doi.org/10.1038/mt.2010.24

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Timperi, E., Vissio, E., MarchiĆ², C., Romano, E. (2020). The Immune Landscape in Women Cancers. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics