We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Public Transportation Prediction with Convolutional Neural Networks | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Public Transportation Prediction with Convolutional Neural Networks

  • Conference paper
  • First Online:
Intelligent Transport Systems. From Research and Development to the Market Uptake (INTSYS 2019)

Abstract

Good, efficient and reliable public transportation systems are of crucial importance for all major cities today. In this paper, we propose a concrete solution to a particular problem: improve the prediction of the bus arrival time at each bus stop station on a given itinerary, by taking to account global and local traffic contexts. The main principle consists of modeling the traffic data as an image structure, adapted for applying CNN deep neural networks. The results obtained shows that the proposed approach outperforms traditional machine learning techniques, such as OLS (Ordinary Least Squares) or SVR (Support Vector Regression) with different kernels (RBF or Polynomial), with more than 18% better accuracy prediction, while being computationally faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SOeS: Mars 2015 Chiffres clés du transport

    Google Scholar 

  2. Azlan, N.N.N., Rohani, M.M.: Overview of application of traffic simulation model. In: MATEC Web Conference, vol. 150, p. 03006 (2018). https://doi.org/10.1051/matecconf/201815003006

    Article  Google Scholar 

  3. Geroliminis, N., Daganzo, C.F.: Macroscopic modeling of traffic in cities (2007)

    Google Scholar 

  4. Toledo, T., Koutsopoulos, H., Ben-Akiva, M., Jha, M.: Microscopic traffic simulation: models and application. In: Simulation Approaches in Transportation Analysis, pp. 99–130. Springer, New York. https://doi.org/10.1007/0-387-24109-4_4

  5. Balmer, M., Rieser, M.: MATSim-T: architecture and simulation times. In: Multi-Agent Systems for Traffic and Transportation Engineering (2009). https://doi.org/10.1140/epjb/e2008-00153-6

    Article  MathSciNet  Google Scholar 

  6. Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator VISSIM. In: Fundamentals of Traffic Simulation (2010). https://doi.org/10.1007/978-1-4419-6142-6_2

    Chapter  Google Scholar 

  7. Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Gener. Comput. Syst. 17, 637–648 (2001). https://doi.org/10.1016/S0167-739X(00)00032-7

    Article  Google Scholar 

  8. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  9. Panovski, D., Zaharia, T.: Simulation-based vehicular traffic lights optimization. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 258–265. IEEE (2016). https://doi.org/10.1109/SITIS.2016.49

  10. Lin, Y., Yang, X., Zou, N., Jia, L.: Real-time bus arrival time prediction: case study for Jinan, China. J. Transp. Eng. 139, 1133–1140 (2013). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000589

    Article  Google Scholar 

  11. As, M., Mine, T.: Dynamic bus travel time prediction using an ANN-based model. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication - IMCOM 2018, pp. 1–8. ACM Press, New York (2018). https://doi.org/10.1145/3164541.3164630

  12. Petersen, N.C., Rodrigues, F., Pereira, F.C.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019). https://doi.org/10.1016/j.eswa.2018.11.028

    Article  Google Scholar 

  13. Google Maps. https://www.google.com/maps

  14. Citymapper - The Ultimate Transport App. https://citymapper.com/paris

  15. Schanzenbacher, F., Chevrier, R., Farhi, N.: Fluidification du traffic Transilien : approach prédictive et optimisation quadratique, 2p (2016)

    Google Scholar 

  16. Munich Transport and Tariff Association | MVV. https://www.mvv-muenchen.de/

  17. Karimpour, M., Karimpour, A., Kompany, K., Karimpour, A.: Online traffic prediction using time series: a case study. In: Constanda, C., Dalla Riva, M., Lamberti, P.D., Musolino, P. (eds.) Integral Methods in Science and Engineering, Volume 2, pp. 147–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59387-6_15

    Chapter  Google Scholar 

  18. Kumar, S.V., Vanajakshi, L.: Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 7, 21 (2015). https://doi.org/10.1007/s12544-015-0170-8

    Article  Google Scholar 

  19. Zhang, N., Zhang, Y., Lu, H.: Seasonal autoregressive integrated moving average and support vector machine models. Transp. Res. Rec. J. Transp. Res. Board. 2215, 85–92 (2011). https://doi.org/10.3141/2215-09

    Article  Google Scholar 

  20. Mir, Z.H., Filali, F.: An adaptive Kalman filter based traffic prediction algorithm for urban road network. In: 2016 12th International Conference on Innovations in Information Technology (IIT), pp. 1–6. IEEE (2016). https://doi.org/10.1109/INNOVATIONS.2016.7880022

  21. Panovski, D., Scurtu, V., Zaharia, T.: Simulation and prediction of public transportation with maps of local density blobs. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–4. IEEE (2019). https://doi.org/10.1109/ICCE.2019.8661921

  22. Panovski, D., Scurtu, V., Zaharia, T.: A neural network-based approach for public transportation prediction with traffic density matrix. In: 2018 7th European Workshop on Visual Information Processing (EUVIP), pp. 1–6. IEEE (2018). https://doi.org/10.1109/EUVIP.2018.8611683

  23. Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017). https://doi.org/10.1016/J.TRC.2017.10.016

    Article  Google Scholar 

  24. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: A generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. Society for Industrial and Applied Mathematics (2017)

    Google Scholar 

  25. Ma, X., Dai, Z., He, Z., Na, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  26. Fouladgar, M., Parchami, M., Elmasri, R., Ghaderi, A.: Scalable deep traffic flow neural networks for urban traffic congestion prediction. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2251–2258. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966128

  27. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks (2019)

    Google Scholar 

  28. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting (2017)

    Google Scholar 

  29. Webmaster: Tan - Ma vie sans arrêt - tan.fr

    Google Scholar 

  30. Accueil—Open Data Nantes Métropole. https://data.nantesmetropole.fr/pages/home/

  31. Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M.: An introduction to OpenStreetMap in geographic information science: experiences, research, and applications. In: Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M. (eds.) OpenStreetMap in GIScience. LNGC, pp. 1–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14280-7_1

    Chapter  Google Scholar 

  32. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  33. Paszke, A., et al.: Automatic differentiation in PyTorch (2017). https://openreview.net/forum?id=BJJsrmfCZ

  34. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, Hoboken (2003)

    Book  Google Scholar 

  35. Undefined: support vector regression (2004). cmlab.csie.ntu.edu.tw. Science, M.W.-D. of C., of, U

  36. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Ching, T., Eddelbuettel, D.: RcppMsgPack: messagepack headers and interface functions for R (2018)

    Google Scholar 

Download references

Acknowledgment

Part of this work has been carried out within the framework of the French FUI project ETS (Electronic Ticketing System), supported by the Conseil Départemantal de l’Essonne and the Systematic Paris Region competitivity cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dancho Panovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panovski, D., Zaharia, T. (2020). Public Transportation Prediction with Convolutional Neural Networks. In: Martins, A., Ferreira, J., Kocian, A. (eds) Intelligent Transport Systems. From Research and Development to the Market Uptake. INTSYS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-030-38822-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38822-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38821-8

  • Online ISBN: 978-3-030-38822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics