Skip to main content

Surgery for Vascular Lesions of the Brainstem

  • Chapter
  • First Online:
Brainstem Tumors

Abstract

Vascular lesions of the brainstem are among the most complicated lesions treated by cerebrovascular neurosurgeons. Aneurysms, arteriovenous malformations, and cavernous malformations can be found in close association with all levels of the brainstem. Due to the inherent risk of treating brainstem pathologies, all surgical decision-making must first be predicated on knowledge of the natural history and radiographic appearance of these lesions. Successful microsurgical treatment of these lesions demands familiarity with an array of skull base approaches, which force surgeons to operate in deeper and narrower surgical corridors than with a corresponding supratentorial pathology. A regional understanding of the neurovascular anatomy that is unique to the midbrain, pons and medulla guides surgical planning. Advanced techniques are used when standard approaches cannot be performed safely, such as cerebral revascularization for complex aneurysms or in situ disconnection without pial dissection for arteriovenous malformations. With careful patient selection and dedication to developing the technical mastery necessary to operate in and around critical brainstem structures, vascular pathology of the brainstem can be treated safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICA:

Anterior inferior cerebellar artery

AVM:

Arteriovenous malformation(s)

BA:

Basilar artery

BRAT:

Barrow Ruptured Aneurysm Trial

BT:

Basilar trunk

BVR:

Basal vein of Rosenthal

CM:

Cavernous malformation

CN:

Cranial nerve

CSF:

Cerebrospinal fluid

CST:

Corticospinal tracts

CT:

Computed tomography

CTA:

Computed tomography angiography

DSA:

Digital subtraction angiography

DTI:

Diffusion tensor imaging

IA:

Intracranial aneurysm

IAC:

Internal auditory canal

ISAT:

International Subarachnoid Aneurysm Trial

ISUIA:

International Study of Unruptured Intracranial Aneurysms

MAPonMesV:

Median anterior pontomesencephalic vein

MCP(s):

Middle cerebellar peduncle(s)

mOZ:

Modified orbitozygomatic

MRA:

MR angiography

MRI:

Magnetic resonance imaging

OA-PICA EC-IC:

Occipital artery-posterior inferior cerebellar artery external carotid-internal carotid

OZ:

Orbitozygomatic

PCA:

Posterior cerebral arteries

PCP:

Posterior clinoid process

PICA:

Posterior inferior cerebellar artery

SAH:

Subarachnoid hemorrhage

SCA:

Superior cerebellar artery

SCIT:

Supracerebellar infratentorial

SPetrV:

Superior petrosal vein

SPS:

Superior petrosal sinus

SS-EPI:

Single-shot echo planar imaging

T2∗GRE:

T2∗-Gradient Recalled Echo

VA:

Vertebral arteries

VBJ:

Vertebrobasilar junction

References

  1. Rhoton ALJ. Microsurgical anatomy of the posterior fossa cranial nerves. Clin Neurosurg. 1979;26:398–462.

    Article  Google Scholar 

  2. Wiebers DO, Whisnant JP, Huston J, Meissner I, Brown RDJ, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.

    Article  Google Scholar 

  3. Goldberg J, Raabe A, Bervini D. Natural history of brain arteriovenous malformations: systematic review. J Neurosurg Sci. 2018;62(4):437–43.

    PubMed  Google Scholar 

  4. Han SJ, Englot DJ, Kim H, Lawton MT. Brainstem arteriovenous malformations: anatomical subtypes, assessment of “occlusion in situ” technique, and microsurgical results. J Neurosurg. 2017;58(4):107–17.

    Google Scholar 

  5. Taslimi S, Modabbernia A, Amin-Hanjani S, Barker FG II, Macdonald RL. Natural history of cavernous malformation. Neurology. 2016;86(21):1984–91.

    Article  Google Scholar 

  6. Spetzler RF, McDougall CG, Zabramski JM, Albuquerque FC, Hills NK, Russin JJ, et al. The barrow ruptured aneurysm trial: 6-year results. J Neurosurg. 2015;123(3):609–17.

    Article  Google Scholar 

  7. Torne R, Rodriguez-Hernandez A, Arikan F, Romero-Chala F, Cicuendez M, Vilalta J, et al. Posterior fossa arteriovenous malformations: significance of higher incidence of bleeding and hydrocephalus. Clin Neurol Neurosurg. 2015;134:37–43.

    Article  Google Scholar 

  8. Ene C, Kaul A, Kim L. Natural history of cerebral cavernous malformations. Handb Clin Neurol. 2017;143:227–32.

    Article  Google Scholar 

  9. Philipp LR, McCracken DJ, McCracken CE, Halani SH, Lovasik BP, Salehani AA, et al. Comparison between CTA and digital subtraction angiography in the diagnosis of ruptured aneurysms. Neurosurgery. 2017;80(5):769–77.

    Article  Google Scholar 

  10. Chen KK, Guo WY, Yang HC, Lin CJ, Wu CHF, Gehrisch S, et al. Application of time-resolved 3D digital subtraction angiography to plan cerebral arteriovenous malformation radiosurgery. AJNR Am J Neuroradiol. 2017;38(4):740–6.

    Article  Google Scholar 

  11. Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery. 2010;66(4):702–13. Discussion 713.

    Article  Google Scholar 

  12. Mosimann PJ, Chapot R. Contemporary endovascular techniques for the curative treatment of cerebral arteriovenous malformations and review of neurointerventional outcomes. J Neurosurg Sci. 2018;62(4):505–13.

    PubMed  Google Scholar 

  13. Rustemi O, Alaraj A, Shakur SF, Orning JL, Du X, Aletich VA, et al. Detection of unruptured intracranial aneurysms on noninvasive imaging. Is there still a role for digital subtraction angiography? Surg Neurol Int. 2015;6:175.

    Article  Google Scholar 

  14. Walcott BP, Choudhri O, Lawton MT. Brainstem cavernous malformations: natural history versus surgical management. J Clin Neurosci. 2016;32:164–5.

    Article  Google Scholar 

  15. Li D, Jiao Y-M, Wang L, Lin F-X, Wu J, Tong X-Z, et al. Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial. J Neurosurg. 2018;130(1):286–301.

    Article  Google Scholar 

  16. Somanna S, Babu RA, Srinivas D, Narasinga Rao KVL, Vazhayil V. Extended endoscopic endonasal transclival clipping of posterior circulation aneurysms–an alternative to the transcranial approach. Acta Neurochir. 2015;157(12):2077–85.

    Article  Google Scholar 

  17. Lawton MT. Basilar apex aneurysms: surgical results and perspectives from an initial experience. Neurosurgery. 2002;50(1):1–8. Discussion 8–10.

    PubMed  Google Scholar 

  18. Bender MT, Wendt H, Monarch T, Lin L-M, Jiang B, Huang J, et al. Shifting treatment paradigms for ruptured aneurysms from open surgery to endovascular therapy over 25 years. World Neurosurg. 2017;106:919–24.

    Article  Google Scholar 

  19. Drake CG, Peerless SJ, Hernesniemi J. Surgery of vertebrobasilar aneurysms. Vienna: Springer Science & Business Media; 2012. 1 p.

    Google Scholar 

  20. Yaşargil MG. Microneurosurgery, volume I. New York: Thieme; 1984. 1 p.

    Google Scholar 

  21. Seckin H, Avci E, Uluc K, Niemann D, Baskaya MK. The work horse of skull base surgery: orbitozygomatic approach. Technique, modifications, and applications. Neurosurg Focus. 2008;25(6):E4.

    Article  Google Scholar 

  22. Lawton MT. Seven aneurysms. New York: Thieme; 2010. 1 p.

    Google Scholar 

  23. Krisht AF, Krayenbuhl N, Sercl D, Bikmaz K, Kadri PAS. Results of microsurgical clipping of 50 high complexity basilar apex aneurysms. Neurosurgery. 2007;60(2):242–50. Discussion 250–2.

    Article  Google Scholar 

  24. Aziz KM, van Loveren HR, Tew JM Jr, Chicoine MR. The Kawase approach to retrosellar and upper clival basilar aneurysms. Neurosurgery. 1999;44(6):1225–34. Discussion 1234–6.

    CAS  PubMed  Google Scholar 

  25. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360(9342):1267–74.

    Article  Google Scholar 

  26. Tjahjadi M, Serrone J, Hernesniemi J. Should we still consider clips for basilar apex aneurysms? A critical appraisal of the literature. Surg Neurol Int. 2018;9(1):44.

    Article  Google Scholar 

  27. Lawton MT. In: Lawton MT, editor. Seven AVMs. Stuttgart: Thieme; 2014. 1 p.

    Chapter  Google Scholar 

  28. Vishteh AG, David CA, Marciano FF, Coscarella E, Spetzler RF. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: technique and clinical experience. Neurosurgery. 2000;46(2):384–8. Discussion 388–9.

    Article  CAS  Google Scholar 

  29. Spetzler RF, Kalani MYS, Nakaji P. Color atlas of brainstem surgery. New York: Thieme; 2017. 1 p.

    Book  Google Scholar 

  30. Yağmurlu K, Rhoton ALJ, Tanriover N, Bennett JA. Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem. Neurosurgery. 2014;10(Suppl 4):602–19. Discussion 619–20.

    PubMed  Google Scholar 

  31. Tan LA, Moftakhar R, Lopes DK. Treatment of a ruptured vertebrobasilar fusiform aneurysm using pipeline embolization device. J Cerebrovasc Endovasc Neurosurg. 2013;15(1):30–4.

    Article  Google Scholar 

  32. Graziano F, Ganau M, Iacopino DG, Boccardi E. Vertebro-basilar junction aneurysms: a single centre experience and meta-analysis of endovascular treatments. Neuroradiol J. 2014;27(6):732–41.

    Article  Google Scholar 

  33. Choudhri O, Connolly ID, Lawton MT. Macrovascular decompression of the brainstem and cranial nerves: evolution of an anteromedial vertebrobasilar artery transposition technique. Neurosurgery. 2017;81(2):367–76.

    Article  Google Scholar 

  34. Lawton MT, Abla AA, Rutledge WC, Benet A, Zador Z, Rayz VL, et al. Bypass surgery for the treatment of dolichoectatic basilar trunk aneurysms: a work in progress. Neurosurgery. 2016;79(1):83–99.

    Article  Google Scholar 

  35. Porter RW, Detwiler PW, Spetzler RF, Lawton MT, Baskin JJ, Derksen PT, et al. Cavernous malformations of the brainstem: experience with 100 patients. J Neurosurg. 1999;90(1):50–8.

    Article  CAS  Google Scholar 

  36. Lawton MT. Seven bypasses. New York: Thieme; 2018. 1 p.

    Google Scholar 

  37. Corley JA, Zomorodi A, Gonzalez LF. Treatment of dissecting distal vertebral artery (V4) aneurysms with flow diverters. Oper Neurosurg (Hagerstown). 2018;15(1):1–9.

    Article  Google Scholar 

  38. Chalouhi N, Patel PD, Atallah E, Starke RM, Chitale A, Lang M, et al. Low yield of cerebral angiography in adequately occluded aneurysms after flow diversion. Neurosurgery. 2018;83(6):1294–7.

    Article  Google Scholar 

  39. Abla AA, Lekovic GP, Turner JD, de Oliveira JG, Porter R, Spetzler RF. Advances in the treatment and outcome of brainstem cavernous malformation surgery: a single-center case series of 300 surgically treated patients. Neurosurgery. 2011;68(2):403–14. Discussion 414–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lawton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, M.J., Lawton, M.T. (2020). Surgery for Vascular Lesions of the Brainstem. In: Jallo, G., Noureldine, M., Shimony, N. (eds) Brainstem Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-38774-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38774-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38773-0

  • Online ISBN: 978-3-030-38774-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics