Skip to main content

Intraoperative Neurophysiological Monitoring During Brainstem Surgery

  • Chapter
  • First Online:
Brainstem Tumors

Abstract

Brainstem surgery is challenging due to the high concentration of essential neural structures such as cranial nerve nuclei, sensorimotor and auditory pathways, as well as the reticular formation. Therefore, even a small injury to the brainstem can hinder the functional integrity of one or more of these neural pathways and result in neurological deficits.

Intraoperative neurophysiology aims not merely to predict but also to prevent neurological injury, thanks to the tailored intraoperative use of standard clinical neurophysiological techniques such as electromyography, and somatosensory, brainstem auditory and motor evoked potentials. Monitoring these potentials allows to prevent an injury to the long pathways within the brainstem. In addition, mapping techniques provide functional identification of critical anatomical landmarks, whenever their visual identification is ambiguous, to select the safest entry route to the brainstem.

In this chapter we critically review the various intyraoperative mapping and monitoring techniques that can be used during surgery for lesions in the midbrain, pons, and medulla oblongata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APB:

Abductor pollicis brevis

BAEPs:

Brainstem auditory evoked potentials

CMAP:

Compound muscle action potential

CSF:

Cerebrospinal fluid

CSTs:

Corticospinal tracts

DTI:

Diffusor tensor imaging

EMG:

Electromyography

ION:

Intraoperative neurophysiology

MEPs:

Motor evoked potentials

mMEP:

Muscle motor evoked potential

SSEPs:

Somatosensory evoked potentials

TA:

Tibialis anterior

TES:

Transcranial electrical stimulation

References

  1. Jallo GI, Shiminski-Maher T, Velazquez L, Abbott R, Wisoff J, Epstein F. Recovery of lower cranial nerve function after surgery for medullary brainstem tumors. Neurosurgery. 2005;56(1):74–7; discussion 78.

    Article  PubMed  Google Scholar 

  2. Abbott R. Brainstem gliomas. In: Mc Lone DG, editor. Pediatric neurosurgery: surgery of developing nervous system. Philadelphia: WB Saunders; 1996. p. 859–67.

    Google Scholar 

  3. Bricolo A. Surgical management of intrinsic brain stem gliomas. Oper Tech Neurosurg. 2000;3:137–54.

    Article  Google Scholar 

  4. Jallo GI, Biser-Rohrbaugh A, Freed D. Brainstem gliomas. Childs Nerv Syst. 2004;3(Mar;20):143–53.

    Article  Google Scholar 

  5. Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T. A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions. J Neurosurg. 2009;78:987–93.

    Article  Google Scholar 

  6. Lang J, Ohmachi N, Sen JL. Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width. Acta Neurochir. 1991;113(1–2):84–90.

    Article  PubMed  Google Scholar 

  7. Strauss C, LĂ¼tjen-Drecoll E, Fahlbusch R. Pericollicular surgical approaches to the rhomboid fossa. Part I Anatomical basis. J Neurosurg. 2009;87(6):893–9.

    Article  Google Scholar 

  8. Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, et al. Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery. 1995;37(5):922–9; discussion 929–30.

    Article  CAS  PubMed  Google Scholar 

  9. Abbott R. The use of physiological mapping and monitoring during surgery for ependymomas. Childs Nerv Syst. 2009;25(10):1241–7.

    Article  PubMed  Google Scholar 

  10. Strauss C, Romstöck J, Fahlbusch R. Pericollicular approaches to the rhomboid fossa. Part II. Neurophysiological basis. J Neurosurg. 1999;91(5):768–75.

    Article  CAS  PubMed  Google Scholar 

  11. Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K. Intra-operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, VI) in skull base surgery. Acta Neurochir. 2001;143(3):251–61.

    Article  CAS  PubMed  Google Scholar 

  12. Sekiya T, Hatayama T, Shimamura N, Neurosurgery SS. Intraoperative electrophysiological monitoring of oculomotor nuclei and their intramedullary tracts during midbrain tumor surgery. Neurosurgery. 2000;47(5):1170–6; discussion 1176–7.

    Article  CAS  PubMed  Google Scholar 

  13. Duffau H, Sichez JP. Intraoperative direct electrical stimulation of the lamina quadrigemina in a case of a deep tectal cavernoma. Acta Neurochir. 1998;140(12):1309–12.

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara H, Bjeljac M, Straumann D, Kaku Y, Roth P, Yonekawa Y. The role of intraoperative monitoring of oculomotor and trochlear nuclei – safe entry zone to tegmental lesions. Minim Invasive Neurosurg. 2006;49(3):168–72.

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Wang M, Zhang L, Fan X, Tao X, Qi L, et al. Neuronavigation-guided corticospinal tract mapping in brainstem tumor surgery: better preservation of motor function. World Neurosurg. 2018;116:e291–7.

    Article  PubMed  Google Scholar 

  16. Czernicki T, Maj E, PodgĂ³rska A, Kunert P, Prokopienko M, Nowak A, et al. Diffusion tensor tractography of pyramidal tracts in patients with brainstem and intramedullary spinal cord tumors: relationship with motor deficits and intraoperative MEP changes. J Magn Reson Imaging. 2017;46(3):715–23.

    Article  PubMed  Google Scholar 

  17. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg. 2010;114:738–46.

    Article  PubMed  Google Scholar 

  18. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012;70:283–94.

    Article  PubMed  Google Scholar 

  19. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol – Evoked Potentials. 1996;100(5):375–83.

    Article  CAS  PubMed  Google Scholar 

  20. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;3982:335–43; discussion 343–4.

    Article  Google Scholar 

  21. Taniguchi M, Cedzich C, Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  22. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19(5):416–29.

    Article  PubMed  Google Scholar 

  23. Neuloh G, Bogucki J, Schramm J. Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry. 2009;80(4):417–22.

    Article  CAS  PubMed  Google Scholar 

  24. Kodama K, Javadi M, Seifert V, Szelényi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg. 2014;121:1453–61.

    Article  PubMed  Google Scholar 

  25. Shiban E, Zerr M, Huber T, Boeck-Behrends T, Wostrack M, Ringel F, et al. Poor diagnostic accuracy of transcranial motor and somatosensory evoked potential monitoring during brainstem cavernoma resection. Acta Neurochir. 2015;157811:1963–9.

    Article  Google Scholar 

  26. Legatt AD, Arezzo JC, Vaughan HG Jr. The anatomic and physiologic bases of brain stem auditory evoked potentials. Neurol Clin. 1988;6(4):681–704.

    Article  CAS  PubMed  Google Scholar 

  27. Legatt AD. Brainstem Auditory Evoked Potentials: methodology, interpretation, and clinical application. In: Aminoff MJ, editor. Electrodiagnosis in clinical Neurology. New York: Churchill Livingstone; 2005. p. 489–523.

    Chapter  Google Scholar 

  28. Fahlbusch R, Strauss C. Surgical significance of brainstem cavernous hemangiomas. Zentralbl Neurochir. 1991;52:25–32.

    CAS  PubMed  Google Scholar 

  29. Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, et al. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery. 1995;37:255–65.

    Article  CAS  PubMed  Google Scholar 

  30. Grabb PA, Albright AL, Sclabassi RJ, Pollack IF. Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg. 1997;86:1–4.

    Article  CAS  PubMed  Google Scholar 

  31. Prell J, Rampp S, Romstöck J, Fahlbusch R, Strauss C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg. 2007;106(5):826–32.

    Article  PubMed  Google Scholar 

  32. Romstöck J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2009;93:586–93.

    Article  Google Scholar 

  33. Dong CCJ, MacDonald DB, Akagami R, Westerberg B, AlKhani A, Kanaan I, et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol. 2005;116:588–96.

    Article  PubMed  Google Scholar 

  34. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994;481(Pt 19):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Téllez MJ, Ulkatan S, Urriza J, Arranz-Arranz B, Deletis V. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring. Clin Neurophysiol. 2016;127:1710–6.

    Article  PubMed  Google Scholar 

  36. Sala F, Lanteri P, Bricolo A. Intraoperative neurophysiological monitoring of motor evoked potentials during brain stem and spinal cord surgery. Adv Tech Stand Neurosurg. 2004;29:133–69.

    Article  CAS  PubMed  Google Scholar 

  37. Acioly MA, Liebsch M, De Aguiar PHP, Tatagiba M. Facial nerve monitoring during cerebellopontine angle and skull base tumor surgery: a systematic review from description to current success on function prediction. World Neurosurg. 2013 Dec;80(6):e271–300.

    Article  PubMed  Google Scholar 

  38. Blessing W. The lower brainstem and bodily homeostasis. New York: Oxford University Press; 1997.

    Google Scholar 

  39. Procaccio F, Gambin R, Gottin L, Bricolo A. Complications of brain stem surgery: prevention and treatment. Oper Tech Neurosurg. 2000;3(2):155–7.

    Article  Google Scholar 

  40. Suzuki K, Matsumoto M, Ohta M, Sasaki T, Kodama N. Experimental study for identification of the facial colliculus using electromyography and antidromic evoked potentials. Neurosurgery. 1997;41:1130–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin. 2007;37:399–406.

    Article  CAS  PubMed  Google Scholar 

  42. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol. 2009;120(2):336–41.

    Google Scholar 

  43. Husain AM, Wright DR, Stolp BW, Friedman AH, Keifer JC. Neurophysiological intraoperative monitoring of the glossopharyngeal nerve: technical case report. Neurosurgery. 2008;63(4 Suppl 2):277–8; discussion 278.

    PubMed  Google Scholar 

  44. Skinner SA. Neurophysiologic monitoring of the spinal accessory nerve, hypoglossal nerve, and the spinomedullary region. J Clin Neurophysiol. 2011;28(6):587–98.

    Article  PubMed  Google Scholar 

  45. Morota N, Deletis V, Lee M, Epstein FJ. Functional anatomic relationship between brain stem tumors and cranial motor nuclei. Neurosurgery. 1996;39:787–94.

    Article  CAS  PubMed  Google Scholar 

  46. Abbott R, Shimimki-Mether T, Epstein FJ. Intrinsic tumors of the medulla: predicting outcome after surgery. Pediatr Neurosurg. 1996;25:41–4.

    Article  CAS  PubMed  Google Scholar 

  47. Prell J, Rachinger J, Scheller C, Alfieri A, Strauss C, Rampp S. A real-time monitoring system for the facial nerve. Neurosurgery. 2010;66(6):1064–73; discussion 1073.

    Article  PubMed  Google Scholar 

  48. Schlake HP, Goldbrunner RH, Milewski C, Krauss J, Trautner H, Behr R, et al. Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX-XII) in skull base surgery. Clin Neurol Neurosurg. 2001;103(2):72–82.

    Article  CAS  PubMed  Google Scholar 

  49. Ito E, Ichikawa M, Itakura T, Ando H, Matsumoto Y, Oda K, et al. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries. J Neurosurg. 2013;118(1):195–201.

    Article  PubMed  Google Scholar 

  50. Fukuda M, Oishi M, Hiraishi T, Saito A, Fujii Y. Pharyngeal motor evoked potentials elicited by transcranial electrical stimulation for intraoperative monitoring during skull base surgery. J J Neurosurg. 2012;116(3):605–10.

    Article  Google Scholar 

  51. Sinclair CF, Téllez MJ, Tapia OR, Ulkatan S, Deletis V. A novel methodology for assessing laryngeal and vagus nerve integrity in patients under general anesthesia. Clin Neurophysiol. 2017;128(7):1399–405.

    Article  PubMed  Google Scholar 

  52. Sala F. A spotlight on intraoperative neurophysiological monitoring of the lower brainstem. Clin Neurophysiol. 2017;128(7):1369–71.

    Article  PubMed  Google Scholar 

  53. Malcharek MJ, Landgraf J, Hennig G, Sorge O, Aschermann J, Sablotzki A. Recordings of long-latency trigeminal somatosensory-evoked potentials in patients under general anaesthesia. Clin Neurophysiol. 2011;122(5):1048–54.

    Article  PubMed  Google Scholar 

  54. Deletis V, Urriza J, Ulkatan S, Fernandez-Conejero I, Lesser J, Misita D. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve. 2009;39(5):642–6.

    Article  PubMed  Google Scholar 

  55. Ulkatan S, Jaramillo AM, Téllez MJ, Goodman RR, Deletis V. Feasibility of eliciting the H reflex in the masseter muscle in patients under general anesthesia. Clin Neurophysiol. 2017;128(1):123–7.

    Article  PubMed  Google Scholar 

  56. Sala F, Gallo P, Tramontano V. Intraoperative neurophysiological monitoring in posterior fossa surgery. In: Ozek M, Cinalli G, Maixner WJ, Sainte-Rose C, editors. Posterior Fossa Tumors in Children. Springer: 2015, p. 239–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sala, F., D’Amico, A. (2020). Intraoperative Neurophysiological Monitoring During Brainstem Surgery. In: Jallo, G., Noureldine, M., Shimony, N. (eds) Brainstem Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-38774-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38774-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38773-0

  • Online ISBN: 978-3-030-38774-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics