Skip to main content

Imaging of Brainstem Lesions

  • Chapter
  • First Online:
Brainstem Tumors

Abstract

Brainstem lesions can arise from the midbrain, pons, or medulla. Oftentimes, these lesions will affect adjacent nuclei/pathways or result in mass-effect within the posterior fossa. Imaging of brainstem lesions can be achieved by utilizing multiple modalities, each of which offer modality-specific advantages and disadvantages. Imaging may include magnetic resonance imaging (MRI), computed tomography (CT), and/or positron emission tomography (PET) imaging. Ultrasound imaging may also be utilized to evaluate the posterior fossa of newborns. The density of the skull base typically presents an obstacle for imaging of the posterior fossa. MRI is the modality of choice for the evaluation and characterization of brainstem lesions. Imaging characteristics of different brainstem lesions can provide invaluable pretreatment information to aid in the diagnosis, assess impact on adjacent structures, and assist in treatment planning. When evaluating neoplastic lesions, imaging may also serve to distinguish between neoplastic progression versus development of post-treatment changes. In this chapter, we provide an overview of the typical imaging appearance of common neoplastic and non-neoplastic lesions within the brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG PET:

18F-2-fluoro-2-deoxy-D-glucose positron emission tomography

18F-FET PET:

18F-fluoro-ethyl-tyrosine positron emission tomography

1H-MRS:

1H-MR-spectroscopy

1H-MRSI:

1H-Magnetic resonance spectroscopic imaging

3D:

Three-dimensional

ADC:

Apparent diffusion coefficient

ADEM:

Acute disseminated encephalomyelitis

ASL:

Arterial spin labeling

AVM:

Arterio-venous malformation

BBB:

Blood brain barrier

BSCMs:

Brainstem cavernous malformations

BSGs:

Brainstem Gliomas

b-SSFP:

Balanced steady-state free procession

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

Cho:

Choline

CISS:

Constructive interference in steady state CN: cranial nerve

CNS:

Central nervous system

CPA:

Cerebellopontine angle cistern

Cr:

Creatine

CSF:

Cerebral spinal fluid

CT:

Computed tomography

DCE:

Dynamic contrast enhancement

DIPG:

Diffuse intrinsic pontine glioma

DRO:

Dentate-rubro-olivary

DSC:

Dynamic susceptibility contrast

DTI:

Diffusion tensor imaging

DTT:

Diffusion tensor tractography

DVA:

Developmental venous anomaly

DWI:

Diffusion weighted imaging

DWI/DTI:

Diffusion weighted or tensor imaging

ED:

Emergency department

EV71:

Enterovirus 71

FA:

Fractional anisotropy

FIESTA:

Fast imaging employing steady-state acquisition

FLAIR:

Fluid-attenuated inversion recovery

HOD:

Hypertrophic olivary degeneration

HSV1:

Herpes simplex virus 1

HU:

Hounsfield units

IAC:

Internal auditory canal

ICH:

Intracranial hemorrhage

ION:

Inferior olivary nucleus

IV:

Intravenous

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MTT:

Mean transit time

NAA:

N-acetylaspartate

ODS:

Osmotic demyelination syndrome

PCNSL:

Primary central nervous system lymphoma

PET:

Positron emission tomography

PPH:

Primary pontine hemorrhage

PWI:

Perfusion weighted imaging

rCBV:

Relative cerebral blood volume

RE:

Rhombencephalitis

SWI:

Susceptibility-weighted imaging

TB:

Tuberculosis

TTP:

Time-to-peak

WHO:

World Health Organization

References

  1. Querol-Pascual M. Clinical approach to brainstem lesions. Semin Ultrasound CT MR. 2010;31(3):220–9.

    Article  PubMed  Google Scholar 

  2. Purohit B, Kamli AA, Kollias SS. Imaging of adult brainstem gliomas. Eur J Radiol. 2015;84(4):709–20.

    Article  PubMed  Google Scholar 

  3. Poretti A, Meoded A, Huisman TAGM. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging. 2012;35(1):32–47.

    Article  PubMed  Google Scholar 

  4. Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TAGM, Poretti A. Congenital abnormalities of the posterior fossa. Radiographics. 2015;35(1):200–20.

    Article  PubMed  Google Scholar 

  5. Blitz AM, Macedo LL, Chonka ZD, Ilica AT, Choudhri AF, Gallia GL, et al. High-resolution CISS MR imaging with and without contrast for evaluation of the upper cranial nerves. Neuroimaging Clin. 2014;24(1):17–34.

    Article  Google Scholar 

  6. Blitz AM, Choudhri AF, Chonka ZD, Ilica AT, Macedo LL, Chhabra A, et al. Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin. 2014;24(1):1–15.

    Article  Google Scholar 

  7. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107(3):174–80.

    Article  PubMed  Google Scholar 

  8. Price SJ, Burnet NG, Donovan T, Green HL, Peña A, Antoun NM, et al. Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol. 2003;58(6):455–62.

    Article  CAS  PubMed  Google Scholar 

  9. Li D, Jiao YM, Wang L, Lin FX, Wu J, Tong XZ, et al. Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial. J Neurosurg. 2018;130(1):286–301.

    Article  PubMed  Google Scholar 

  10. Cao Z, Lv J, Wei X, Quan W. Appliance of preoperative diffusion tensor imaging and fiber tractography in patients with brainstem lesions. Neurol India. 2010;58(6):886–90.

    Article  PubMed  Google Scholar 

  11. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C. Diffusion tensor imaging and white matter tractography in patients with brainstem lesions. Acta Neurochir. 2007;149(11):1131; discussion 1131.

    Article  Google Scholar 

  12. Chen X, Weigel D, Ganslandt O, Fahlbusch R, Buchfelder M, Nimsky C. Diffusion tensor-based fiber tracking and intraoperative neuronavigation for the resection of a brainstem cavernous angioma. Surg Neurol. 2007;68(3):291; discussion 291.

    Article  Google Scholar 

  13. Wu J, Zhou L, Tang W, Mao Y, Hu J, Song Y, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):949.

    Article  Google Scholar 

  14. Yao Y, Ulrich NH, Guggenberger R, Alzarhani YA, Bertalanffy H, Kollias SS. Quantification of corticospinal tracts with diffusion tensor imaging in brainstem surgery: prognostic value in 14 consecutive cases at 3T magnetic resonance imaging. World Neurosurg. 2015;83(6):​1006–14.

    Article  PubMed  Google Scholar 

  15. Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro-Oncology. 2011;13(8):904–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laprie A, Pirzkall A, Haas-Kogan DA, Cha S, Banerjee A, Le TP, et al. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(1):20–31.

    Article  PubMed  Google Scholar 

  17. Rossi A, Martinetti C, Morana G, Severino M, Tortora D. Neuroimaging of infectious and inflammatory diseases of the pediatric cerebellum and brainstem. Neuroimaging Clin N Am. 2016;26(3):471–87.

    Article  PubMed  Google Scholar 

  18. Bahrami S, Yim CM. Quality initiatives: blind spots at brain imaging. Radiographics. 2009;29(7):1877–96.

    Article  PubMed  Google Scholar 

  19. Vogl T, Harth M. Chapter 3: neuro imaging of the posterior Fossa. 2011; Available at: https://pdfs.semanticscholar.org/5f8d/0abf76715d2dfadca3fc943da1beba32acb1.pdf.

  20. Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol. 2018;149:89–112.

    PubMed  PubMed Central  Google Scholar 

  21. Lin TF, Prados M. Brainstem Gliomas. In: Gupta N, Banerjee A, Haas-Kogan DA, editors. Pediatric CNS tumors. Cham: Springer International Publishing; 2017. p. 51–67.

    Chapter  Google Scholar 

  22. Jallo G. Brainstem gliomas. Childs Nerv Syst. 2006;22(1):1–2.

    Article  PubMed  Google Scholar 

  23. Green AL, Kieran MW. Pediatric brainstem gliomas: new understanding leads to potential new treatments for two very different tumors. Curr Oncol Rep. 2015;17(3):436.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ, Kaufmann TJ. 2016 updates to the WHO brain tumor classification system: what the radiologist needs to know. Radiographics. 2017;37(7):2164–80.

    Article  PubMed  Google Scholar 

  25. Guzmán-De-Villoria JA, Ferreiro-Argüelles C, Fernández-García P. Differential diagnosis of T2 hyperintense brainstem lesions: Part 2. Diffuse lesions. Semin Ultrasound CT MR. 2010;31(3):260–74.

    Article  PubMed  Google Scholar 

  26. O’Neill BP, Illig JJ. Primary central nervous system lymphoma. Mayo Clin Proc. 1989;64(8):1005–20.

    Article  PubMed  Google Scholar 

  27. Murray K, Kun L, Cox J. Primary malignant lymphoma of the central nervous system. Results of treatment of 11 cases and review of the literature. J Neurosurg. 1986;65(5):600–7.

    Article  CAS  PubMed  Google Scholar 

  28. Shams PN, Waldman A, Plant GT. B cell lymphoma of the brain stem masquerading as myasthenia. J Neurol Neurosurg Psychiatry. 2002;72(2):271–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carlson BA. Rapidly progressive dementia caused by nonenhancing primary lymphoma of the central nervous system. AJNR Am J Neuroradiol. 1996;17(9):1695–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nabavizadeh SA, Vossough A, Hajmomenian M, Assadsangabi R, Mohan S. Neuroimaging in central nervous system lymphoma. Hematol Oncol Clin North Am. 2016;30(4):799–821.

    Article  PubMed  Google Scholar 

  31. Vaquero J, Martínez R, Rossi E, López R. Primary cerebral lymphoma: the “ghost tumor”. Case report. J Neurosurg. 1984;60(1):174–6.

    Article  CAS  PubMed  Google Scholar 

  32. Barajas RF, Rubenstein JL, Chang JS, Hwang J, Cha S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Blasel S, Vorwerk R, Kiyose M, Mittelbronn M, Brunnberg U, Ackermann H, et al. New MR perfusion features in primary central nervous system lymphomas: pattern and prognostic impact. J Neurol. 2018;265(3):647–58.

    Article  PubMed  Google Scholar 

  34. Haldorsen IS, Kråkenes J, Krossnes BK, Mella O, Espeland A. CT and MR imaging features of primary central nervous system lymphoma in Norway, 1989–2003. AJNR Am J Neuroradiol. 2009;30(4):744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72.

    Article  PubMed  Google Scholar 

  36. Lee RR, Becher MW, Benson ML, Rigamonti D. Brain capillary telangiectasia: MR imaging appearance and clinicohistopathologic findings. Radiology. 1997;205(3):797–805.

    Article  CAS  PubMed  Google Scholar 

  37. Nathal E, Patiño-Rodriguez HM, Arauz A, Imam SS, Acosta E, Evins AI, et al. Risk factors for unfavorable outcomes in surgically treated brainstem cavernous malformations. World Neurosurg. 2018;111:e484.

    Article  Google Scholar 

  38. Akers A, Al-Shahi Salman R, Awad I, Dahlem K, Flemming K, Hart B, et al. Synopsis of guidelines for the clinical Management of Cerebral Cavernous Malformations: consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery. 2017;80(5):665–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abla AA, Lekovic GP, Turner JD, de Oliveira JG, Porter R, Spetzler RF. Advances in the treatment and outcome of brainstem cavernous malformation surgery: a single-center case series of 300 surgically treated patients. Neurosurgery. 2011;68(2):5.

    Google Scholar 

  40. Mokin M, Agazzi S, Dawson L, Primiani CT. Neuroimaging of cavernous malformations. Curr Pain Headache Rep. 2017;21(12):47.

    Article  PubMed  Google Scholar 

  41. Rivera PP, Willinsky RA, Porter PJ. Intracranial cavernous malformations. Neuroimaging Clin N Am. 2003;13(1):27–40.

    Article  PubMed  Google Scholar 

  42. de Souza JM, Domingues RC, Cruz LCH, Domingues FS, Iasbeck T, Gasparetto EL. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol. 2008;29(1):154–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296.

    PubMed  PubMed Central  Google Scholar 

  44. Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653–62.

    Article  PubMed  Google Scholar 

  45. Faraji AH, Abhinav K, Jarbo K, Yeh F, Shin SS, Pathak S, et al. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg. 2015;123(5):1133–44.

    Article  CAS  PubMed  Google Scholar 

  46. Kovanlikaya I, Firat Z, Kovanlikaya A, Uluğ AM, Cihangiroglu MM, John M, et al. Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3T. Eur J Radiol. 2011;77(3):383–91.

    Article  PubMed  Google Scholar 

  47. El-Koussy M, Schroth G, Gralla J, Brekenfeld C, Andres RH, Jung S, et al. Susceptibility-weighted MR imaging for diagnosis of capillary telangiectasia of the brain. Am J Neuroradiol. 2012;33(4):715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giroud M, Gras P, Chadan N, Beuriat P, Milan C, Arveux P, et al. Cerebral haemorrhage in a French prospective population study. J Neurol Neurosurg Psychiatry. 1991;54(7):595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murata Y, Yamaguchi S, Kajikawa H, Yamamura K, Sumioka S, Nakamura S. Relationship between the clinical manifestations, computed tomographic findings and the outcome in 80 patients with primary pontine hemorrhage. J Neurol Sci. 1999;167(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  50. Wessels T, Möller-Hartmann W, Noth J, Klötzsch C. CT findings and clinical features as markers for patient outcome in primary pontine hemorrhage. Am J Neuroradiol. 2004;25(2):257–60.

    PubMed  PubMed Central  Google Scholar 

  51. Ortiz de Mendivil A, Alcalá-Galiano A, Ochoa M, Salvador E, Millán JM. Brainstem stroke: anatomy, clinical and radiological findings. Semin Ultrasound CT MR. 2013;34(2):131–41.

    Article  PubMed  Google Scholar 

  52. Parizel PM, Makkat S, Van Miert E, Van Goethem JW, van den Hauwe L, De Schepper AM. Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol. 2001;11(9):1770–83.

    Article  CAS  PubMed  Google Scholar 

  53. Higgins LJ, Koshy J, Mitchell SE, Weiss CR, Carson KA, Huisman TAGM, et al. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children. Clin Radiol. 2016;71(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  54. Huisman TAGM. Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur Radiol. 2005;15(3):434–40.

    Article  PubMed  Google Scholar 

  55. Koton S, Schneider ALC, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA. 2014;312(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  56. Burger KM, Tuhrim S, Naidich TP. Brainstem vascular stroke anatomy. Neuroimaging Clin N Am. 2005;15(2):324, x.

    Article  Google Scholar 

  57. Onen MR, Moore K, Cikla U, Ucer M, Schmidt B, Field AS, et al. Hypertrophic Olivary degeneration: neurosurgical perspective and literature review. World Neurosurg. 2018;112:e771.

    Article  Google Scholar 

  58. Gatlin JL, Wineman R, Schlakman B, Buciuc R, Khan M. Hypertrophic Olivary degeneration after resection of a pontine cavernous malformation: a case report. J Radiol Case Rep. 2011;5(3):24–9.

    PubMed  PubMed Central  Google Scholar 

  59. Goyal M, Versnick E, Tuite P, Cyr JS, Kucharczyk W, Montanera W, et al. Hypertrophic olivary degeneration: metaanalysis of the temporal evolution of MR findings. AJNR Am J Neuroradiol. 2000;21(6):1073–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kitajima M, Korogi Y, Shimomura O, Sakamoto Y, Hirai T, Miyayama H, et al. Hypertrophic olivary degeneration: MR imaging and pathologic findings. Radiology. 1994;192(2):539–43.

    Article  CAS  PubMed  Google Scholar 

  61. Orman G, Bosemani T, Jallo GI, Huisman TAGM, Poretti A. Hypertrophic olivary degeneration in a child following midbrain tumor resection: longitudinal diffusion tensor imaging studies. J Neurosurg Pediatr. 2014;13(4):408–13.

    Article  PubMed  Google Scholar 

  62. Dubinsky RM, Hallett M, Di Chiro G, Fulham M, Schwankhaus J. Increased glucose metabolism in the medulla of patients with palatal myoclonus. Neurology. 1991;41(4):557–62.

    Article  CAS  PubMed  Google Scholar 

  63. Huisman TAGM. Tumor-like lesions of the brain. Cancer Imaging. 2009;9(Special issue A):S13.

    Google Scholar 

  64. Tavasoli A, Armangue T, Ho C, Whitehead M, Bornhorst M, Rhee J, et al. Alexander disease. J Child Neurol. 2017;32(2):184–7.

    Article  PubMed  Google Scholar 

  65. Ruzek KA, Campeau NG, Miller GM. Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. AJNR Am J Neuroradiol. 2004;25(2):210–3.

    PubMed  PubMed Central  Google Scholar 

  66. Lu Z, Zhang B, Qiu W, Kang Z, Shen L, Long Y, et al. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis. PLoS One. 2011;6(8):e22766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller GM, Baker HL, Okazaki H, Whisnant JP. Central pontine myelinolysis and its imitators: MR findings. Radiology. 1988;168(3):795–802.

    Article  CAS  PubMed  Google Scholar 

  68. Alleman AM. Osmotic demyelination syndrome: central pontine myelinolysis and extrapontine myelinolysis. Semin Ultrasound CT MR. 2014;35(2):153–9.

    Article  PubMed  Google Scholar 

  69. Jubelt B, Mihai C, Li TM, Veerapaneni P. Rhombencephalitis/brainstem encephalitis. Curr Neurol Neurosci Rep. 2011;11(6):543–52.

    Article  CAS  PubMed  Google Scholar 

  70. Quattrocchi CC, Errante Y, Rossi Espagnet MC, Galassi S, Della Sala SW, Bernardi B, et al. Magnetic resonance imaging differential diagnosis of brainstem lesions in children. World J Radiol. 2016;8(1):1–20.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lyons JL, Neagu MR, Norton IH, Klein JP. Diffusion tensor imaging in brainstem tuberculoma. J Clin Neurosci. 2013;20(11):1598–9.

    Article  PubMed  Google Scholar 

  72. Smirniotopoulos JG, Yue NC, Rushing EJ. Cerebellopontine angle masses: radiologic-pathologic correlation. Radiographics. 1993;13(5):1131–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry A. G. M. Huisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores, M.A., Blitz, A.M., Gujar, S.K., Huisman, T.A.G.M. (2020). Imaging of Brainstem Lesions. In: Jallo, G., Noureldine, M., Shimony, N. (eds) Brainstem Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-38774-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38774-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38773-0

  • Online ISBN: 978-3-030-38774-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics