Skip to main content

Future Therapies for Malignant Brainstem Tumors

  • Chapter
  • First Online:
  • 576 Accesses

Abstract

Malignant brainstem tumors are a heterogenous group of tumors, where diffuse intrinsic pontine glioma (DIPG) is the most common type. Because of the infiltrative nature of the tumor and the structure of the brainstem, surgical resection is not a therapeutic option for DIPG. Radiation therapy is the current standard of care for this tumor but is only palliative. Conventional chemotherapy has not shown efficacy. Obstacles in achieving effective nonsurgical treatment in this tumor include, but are not limited to, the relatively intact blood-brain barrier, the drug efflux transporters, and the immune privilege and specialization.

Emerging therapies for DIPG include therapeutic agents targeting recently discovered genetic and epigenetic aberrations, drug delivery methods to address the relatively intact blood-brain barrier and drug efflux transporters, antibody- and cell-based immunotherapies, and oncolytic viruses. Some of these therapies are being evaluated in clinical studies, and some results were recently reported. Convection-enhanced delivery (CED) is one of the drug delivery methods; when used to deliver a radiolabeled antibody, CED showed good safety data and potential therapeutic efficacy. In some therapeutic vaccine trials in DIPG patients, immune responses were detected against glioma-associated antigens, and some patients had prolonged survival. Adoptive cell therapies and oncolytic virus therapies for DIPG are also under development. Despite the challenges in treating DIPG, these emerging therapies will likely improve the outcomes of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

Anaplastic astrocytoma

ABC:

ATP-binding cassette

ABCG:

ATP-binding cassette, subfamily G

ACVR1:

Activin A receptor, type I

Ad5:

Adenovirus serotype 5

ADC:

Antibody-drug conjugate

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALA:

5-aminolevulinic acid

AlPcS2a:

Aluminum phthalocyanine disulfonate

AML:

Acute myeloid leukemia

ATRT:

Atypical teratoid rhabdoid tumor

ATRX:

Alpha thalassemia/mental retardation syndrome X-linked

BBB:

Blood-brain barrier

BMPs:

Bone morphogenic proteins

CARs:

Chimeric antigen receptors

CAR-T:

Chimeric antigen receptor T-cell

CBTRUS:

Central Brain Tumor Registry of the United States

CDC:

Complement-dependent cytotoxicity

CED:

Convection-enhanced delivery

CMV:

Cytomegalovirus

CNS:

Central nervous system

CPT-11:

Camptothecin-11

CSF:

Cerebrospinal fluid

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

CYP450s:

Cytochromes P450

DIPG:

Diffuse intrinsic pontine glioma

DNA:

Deoxyribonucleic acid

DT:

Diphtheria toxin

EGFR:

Epidermal growth factor receptors

EGFRvIII:

EGFR variant III

ETANTR:

Embryonal tumor with abundant neuropil and true rosettes

ETX:

Epsilon toxin, active form

ETXp:

Epsilon prototoxin

EZH2:

Enhancer of zeste homolog 2

FUS:

Focused ultrasound

G34R:

Glycine-to-arginine missense at position 34

GBM:

Glioblastoma multiforme

Gd-DTPA:

Gadolinium-diethylenetriamine penta-acetic acid

HDACi:

Histone deacetylase inhibitor

HER2:

Human epidermal growth factor receptor 2

HGG:

High-grade glioma

HLA:

Human leukocyte antigen

HSV:

Herpes simplex virus

ICOS:

Inducible costimulator

IDH:

Isocitrate dehydrogenase

IDO1:

Indoleamine 2,3-dioxygensase 1

IFN:

Interferon

K27M:

Lysine-to-methionine missense at position 27

LAG-3:

Lymphocyte activation gene 3

LDLR:

Low-density lipoproteins receptor

LRPs:

LDLR-related proteins

MDR:

Multidrug resistance

MHC:

Major histocompatibility complex

MRI:

Magnetic resonance imaging

MRP:

Multidrug-resistance-associated protein

NK:

Natural killer

PCI:

Photochemical internalization

PD-1:

Programmed death-1

PDGFR:

Platelet-derived growth factor receptors

PDT:

Photodynamic therapy

PE:

Pseudomonas exotoxin

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PNET:

Primitive neuroectodermal tumor

PRC2:

Polycomb repressive complex 2

PTEN:

Phosphatase and tensin homolog

RNA:

Ribonucleic acid

RTKs:

Receptor tyrosine kinases

scFv:

Single-chain variable fragment

SPECT:

Single photon emission computed tomography

TCRs:

T-cell receptors

Tf:

Transferrin

TGF-β1:

Transforming growth factor β1

TIL:

Tumor-infiltrating lymphocyte

TIM-3:

T-cell immunoglobulin and mucin domain-containing 3

TK:

Thymidine kinase

Treg:

Regulatory T cell

TTRNA-DC:

Total tumor mRNA-pulsed autologous dendritic cell

VEGF:

Vascular endothelial growth factors

WHO:

World Health Organization

α:

Alpha

β:

Beta

References

  1. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology. 2017;19(suppl_5):v1–v88. https://doi.org/10.1093/neuonc/nox158.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pierre-Kahn A, Hirsch JF, Vinchon M, Payan C, Sainte-Rose C, Renier D, et al. Surgical management of brain-stem tumors in children: results and statistical analysis of 75 cases. J Neurosurg. 1993;79(6):845–52. https://doi.org/10.3171/jns.1993.79.6.0845.

    Article  CAS  PubMed  Google Scholar 

  3. Freeman CR, Farmer JP. Pediatric brain stem gliomas: a review. Int J Radiat Oncol Biol Phys. 1998;40(2):265–71.

    Article  CAS  PubMed  Google Scholar 

  4. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241–8. S1470-2045(06)70615-5 [pii]. https://doi.org/10.1016/S1470-2045(06)70615-5.

    Article  PubMed  Google Scholar 

  5. Klimo P Jr, Nesvick CL, Broniscer A, Orr BA, Choudhri AF. Malignant brainstem tumors in children, excluding diffuse intrinsic pontine gliomas. J Neurosurg Pediatr. 2016;17(1):57–65. https://doi.org/10.3171/2015.6.PEDS15166.

    Article  PubMed  Google Scholar 

  6. Babu R, Kranz PG, Agarwal V, McLendon RE, Thomas S, Friedman AH, et al. Malignant brainstem gliomas in adults: clinicopathological characteristics and prognostic factors. J Neuro-Oncol. 2014;119(1):177–85. https://doi.org/10.1007/s11060-014-1471-9.

    Article  Google Scholar 

  7. Poussaint TY, Kocak M, Vajapeyam S, Packer RI, Robertson RL, Geyer R, et al. MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro-Oncology. 2011;13(4):417–27. https://doi.org/10.1093/neuonc/noq200.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broniscer A, Baker SD, Wetmore C, Pai Panandiker AS, Huang J, Davidoff AM, et al. Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clin Cancer Res. 2013;19(11):3050–8. https://doi.org/10.1158/1078-0432.CCR-13-0306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Subashi E, Cordero FJ, Halvorson KG, Qi Y, Nouls JC, Becher OJ, et al. Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neuro-Oncol. 2016;126(2):243–51. https://doi.org/10.1007/s11060-015-1969-9.

    Article  CAS  Google Scholar 

  10. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66. https://doi.org/10.1101/gr.184901.

    Article  CAS  PubMed  Google Scholar 

  11. Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 1999;59(23):5938–46.

    CAS  PubMed  Google Scholar 

  12. Ashraf T, Kao A, Bendayan R. Functional expression of drug transporters in glial cells: potential role on drug delivery to the CNS. Adv Pharmacol. 2014;71:45–111. https://doi.org/10.1016/bs.apha.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta. 2013;1831(2):263–75. https://doi.org/10.1016/j.bbalip.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  14. Miller DS, Graeff C, Droulle L, Fricker S, Fricker G. Xenobiotic efflux pumps in isolated fish brain capillaries. Am J Physiol Regul Integr Comp Physiol. 2002;282(1):R191–8. https://doi.org/10.1152/ajpregu.00305.2001.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer B, Hartz AM, Fricker G, Miller DS. Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med (Maywood). 2005;230(2):118–27.

    Article  CAS  Google Scholar 

  16. Bendayan R, Ronaldson PT, Gingras D, Bendayan M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem. 2006;54(10):1159–67. https://doi.org/10.1369/jhc.5A6870.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Veringa SJ, Biesmans D, van Vuurden DG, Jansen MH, Wedekind LE, Horsman I, et al. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One. 2013;8(4):e61512. https://doi.org/10.1371/journal.pone.0061512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.

    CAS  PubMed  Google Scholar 

  19. Spremulli EN, Dexter DL. Human tumor cell heterogeneity and metastasis. J Clin Oncol. 1983;1(8):496–509. https://doi.org/10.1200/JCO.1983.1.8.496.

    Article  CAS  PubMed  Google Scholar 

  20. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45. https://doi.org/10.1038/nature12625.

    Article  CAS  PubMed  Google Scholar 

  21. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. https://doi.org/10.1016/j.stem.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  22. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82. https://doi.org/10.1158/0008-5472.CAN-12-2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet. 2012;13(11):795–806. https://doi.org/10.1038/nrg3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34. https://doi.org/10.1002/path.4230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13. https://doi.org/10.1038/nature09460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33. https://doi.org/10.1038/ng.2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 2013;123(11):4918–22. https://doi.org/10.1172/JCI70354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–14. https://doi.org/10.1073/pnas.1219747110.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401. https://doi.org/10.1126/science.1254257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol. 1986;4(2):244–57. https://doi.org/10.1200/JCO.1986.4.2.244.

    Article  CAS  PubMed  Google Scholar 

  32. Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E, et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 2014;6(3):514–27. https://doi.org/10.1016/j.celrep.2013.12.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924–35. https://doi.org/10.1038/nrc2013.

    Article  CAS  PubMed  Google Scholar 

  34. Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell. 2016;29(4):563–73. https://doi.org/10.1016/j.ccell.2016.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro-Oncology. 2007;9(2):145–60. https://doi.org/10.1215/15228517-2006-031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clerk-Lamalice O, Reddick WE, Li X, Li Y, Edwards A, Glass JO, et al. MRI evaluation of non-necrotic T2-Hyperintense foci in pediatric diffuse intrinsic Pontine glioma. AJNR Am J Neuroradiol. 2016;37(10):1930–7. https://doi.org/10.3174/ajnr.A4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harward S, Harrison Farber S, Malinzak M, Becher O, Thompson EM. T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity. Childs Nerv Syst. 2018;34(3):449–55. https://doi.org/10.1007/s00381-017-3659-8.

    Article  PubMed  Google Scholar 

  38. Steffen-Smith EA, Sarlls JE, Pierpaoli C, Shih JH, Bent RS, Walker L, et al. Diffusion tensor histogram analysis of pediatric diffuse intrinsic pontine glioma. Biomed Res Int. 2014;2014:647356. https://doi.org/10.1155/2014/647356.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Poussaint TY, Vajapeyam S, Ricci KI, Panigrahy A, Kocak M, Kun LE, et al. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2016;18(5):725–34. https://doi.org/10.1093/neuonc/nov256.

    Article  CAS  PubMed  Google Scholar 

  40. Bugiani M, Veldhuijzen van Zanten SEM, Caretti V, Schellen P, Aronica E, Noske DP, et al. Deceptive morphologic and epigenetic heterogeneity in diffuse intrinsic pontine glioma. Oncotarget. 2017;8(36):60447–52. https://doi.org/10.18632/oncotarget.19726.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic Pontine glioma. Cancer Cell. 2017;32(4):520-37 e5. https://doi.org/10.1016/j.ccell.2017.08.017.

    Article  CAS  Google Scholar 

  42. Hoffman LM, DeWire M, Ryall S, Buczkowicz P, Leach J, Miles L, et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016;4:1. https://doi.org/10.1186/s40478-015-0269-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84–8. https://doi.org/10.1038/nm1517.

    Article  CAS  PubMed  Google Scholar 

  44. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19(12):3165–75. https://doi.org/10.1158/1078-0432.CCR-12-3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 2015;17(8):1064–75. https://doi.org/10.1093/neuonc/nou307.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Z, Luther N, Ibrahim GM, Hawkins C, Vibhakar R, Handler MH, et al. B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. J Neuro-Oncol. 2013;111(3):257–64. https://doi.org/10.1007/s11060-012-1021-2.

    Article  CAS  Google Scholar 

  47. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5. https://doi.org/10.1126/science.1160062.

    Article  CAS  PubMed  Google Scholar 

  50. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007;13(7):2158–67. https://doi.org/10.1158/1078-0432.CCR-06-2070.

    Article  CAS  PubMed  Google Scholar 

  51. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3(11):1097–101. https://doi.org/10.1038/ni846.

    Article  CAS  PubMed  Google Scholar 

  52. Zhai L, Lauing KL, Chang AL, Dey M, Qian J, Cheng Y, et al. The role of IDO in brain tumor immunotherapy. J Neuro-Oncol. 2015;123(3):395–403. https://doi.org/10.1007/s11060-014-1687-8.

    Article  CAS  Google Scholar 

  53. Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 2013;72(6):1031–8; discussion 8-9. https://doi.org/10.1227/NEU.0b013e31828cf945.

    Article  PubMed  Google Scholar 

  54. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–21. https://doi.org/10.1158/1078-0432.CCR-12-2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lieberman NAP, DeGolier K, Kovar HM, Davis A, Hoglund V, Stevens J, et al. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro-Oncology. 2019;21(1):83–94. https://doi.org/10.1093/neuonc/noy145.

    Article  CAS  PubMed  Google Scholar 

  56. Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, et al. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 2010;70(6):2548–57. 0008-5472.CAN-09-2503 [pii]. https://doi.org/10.1158/0008-5472.CAN-09-2503.

    Article  CAS  PubMed  Google Scholar 

  57. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44. JCO.2009.25.5463 [pii]. https://doi.org/10.1200/JCO.2009.25.5463.

    Article  CAS  PubMed  Google Scholar 

  58. Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One. 2012;7(2):e30313. https://doi.org/10.1371/journal.pone.0030313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011;29(30):3999–4006. https://doi.org/10.1200/JCO.2011.35.5677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061–8. JCO.2009.26.7252 [pii]. https://doi.org/10.1200/JCO.2009.26.7252.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Badhe PB, Chauhan PP, Mehta NK. Brainstem gliomas--a clinicopathological study of 45 cases with p53 immunohistochemistry. Indian J Cancer. 2004;41(4):170–4.

    PubMed  Google Scholar 

  62. Zhang S, Feng X, Koga H, Ichikawa T, Abe S, Kumanishi T. p53 gene mutations in pontine gliomas of juvenile onset. Biochem Biophys Res Commun. 1993;196(2):851–7. S0006291X83723272 [pii]. https://doi.org/10.1006/bbrc.1993.2327.

    Article  CAS  PubMed  Google Scholar 

  63. Louis DN, Rubio MP, Correa KM, Gusella JF, von Deimling A. Molecular genetics of pediatric brain stem gliomas. Application of PCR techniques to small and archival brain tumor specimens. J Neuropathol Exp Neurol. 1993;52(5):507–15.

    Article  CAS  PubMed  Google Scholar 

  64. Barrow J, Adamowicz-Brice M, Cartmill M, MacArthur D, Lowe J, Robson K, et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro-Oncology. 2011;13(2):212–22. https://doi.org/10.1093/neuonc/noq158.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng Y, Wu H. Recent advances on molecular biology of diffuse astrocytoma. Zhonghua Bing Li Xue Za Zhi. 1999;28(3):165–8.

    CAS  PubMed  Google Scholar 

  66. Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, Zheng J, et al. Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol. 1999;30(11):1284–90.

    Article  CAS  PubMed  Google Scholar 

  67. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6. https://doi.org/10.1038/ng.2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taylor KR, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457–61. https://doi.org/10.1038/ng.2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50. https://doi.org/10.1038/ng.2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–90. https://doi.org/10.1002/humu.20868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petrie KA, Lee WH, Bullock AN, Pointon JJ, Smith R, Russell RG, et al. Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients. PLoS One. 2009;4(3):e5005. https://doi.org/10.1371/journal.pone.0005005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song GA, Kim HJ, Woo KM, Baek JH, Kim GS, Choi JY, et al. Molecular consequences of the ACVR1(R206H) mutation of fibrodysplasia ossificans progressiva. J Biol Chem. 2010;285(29):22542–53. https://doi.org/10.1074/jbc.M109.094557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset PO, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46(5):462–6. https://doi.org/10.1038/ng.2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47. https://doi.org/10.1007/s00401-012-0998-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3. https://doi.org/10.1038/ng.1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31. https://doi.org/10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  77. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27. https://doi.org/10.1007/s00401-015-1478-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hawkins CE, Ellison DW, Sturm D. Diffuse midline glioma, H3 K27M-mutant. WHO classification of tumors of the central nervous system. 2016:57–59.

    Google Scholar 

  79. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Varenika V, Dickinson P, Bringas J, LeCouteur R, Higgins R, Park J, et al. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg. 2008;109(5):874–80. https://doi.org/10.3171/JNS/2008/109/11/0874.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro-Oncology. 2008;10(3):320–9. 15228517-2008-012 [pii]. https://doi.org/10.1215/15228517-2008-012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sampson JH, Archer G, Pedain C, Wembacher-Schroder E, Westphal M, Kunwar S, et al. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg. 2010;113(2):301–9. https://doi.org/10.3171/2009.11.JNS091052.

    Article  PubMed  Google Scholar 

  83. Sampson JH, Raghavan R, Provenzale JM, Croteau D, Reardon DA, Coleman RE, et al. Induction of hyperintense signal on T2-weighted MR images correlates with infusion distribution from intracerebral convection-enhanced delivery of a tumor-targeted cytotoxin. AJR Am J Roentgenol. 2007;188(3):703–9. 188/3/703 [pii]. https://doi.org/10.2214/AJR.06.0428.

    Article  PubMed  Google Scholar 

  84. Sampson JH, Akabani G, Friedman AH, Bigner D, Kunwar S, Berger MS, et al. Comparison of intratumoral bolus injection and convection-enhanced delivery of radiolabeled antitenascin monoclonal antibodies. Neurosurg Focus. 2006;20(4):E14. 200414 [pii]. https://doi.org/10.3171/foc.2006.20.4.9.

    Article  Google Scholar 

  85. Sampson JH, Brady ML, Petry NA, Croteau D, Friedman AH, Friedman HS et al. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery. 2007;60(2 Suppl 1):ONS89–98; discussion ONS-9. 00006123–200702001-00013 [pii]. https://doi.org/10.1227/01.NEU.0000249256.09289.5F.

  86. Lonser RR, Warren KE, Butman JA, Quezado Z, Robison RA, Walbridge S, et al. Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg. 2007;107(1):190–7. https://doi.org/10.3171/JNS-07/07/0190.

    Article  PubMed  Google Scholar 

  87. Sandberg DI, Edgar MA, Souweidane MM. Convection-enhanced delivery into the rat brainstem. J Neurosurg. 2002;96(5):885–91.

    Article  PubMed  Google Scholar 

  88. Souweidane MM, Occhiogrosso G, Mark EB, Edgar MA. Interstitial infusion of IL13-PE38QQR in the rat brain stem. J Neuro-Oncol. 2004;67(3):287–93.

    Article  Google Scholar 

  89. Souweidane MM, Occhiogrosso G, Mark EB, Edgar MA, Dunkel IJ. Interstitial infusion of carmustine in the rat brain stem with systemic administration of O6-benzylguanine. J Neuro-Oncol. 2004;67(3):319–26.

    Article  Google Scholar 

  90. Luther N, Cheung NK, Dunkel IJ, Fraser JF, Edgar MA, Gutin PH, et al. Intraparenchymal and intratumoral interstitial infusion of anti-glioma monoclonal antibody 8H9. Neurosurgery. 2008;63(6):1166–74; discussion 74. 00006123-200812000-00030 [pii]. https://doi.org/10.1227/01.NEU.0000334052.60634.84.

    Article  PubMed  Google Scholar 

  91. Luther N, Cheung NK, Souliopoulos EP, Karempelas I, Bassiri D, Edgar MA, et al. Interstitial infusion of glioma-targeted recombinant immunotoxin 8H9scFv-PE38. Mol Cancer Ther. 2010;9(4):1039–46. 1535-7163.MCT-09-0996 [pii]. https://doi.org/10.1158/1535-7163.MCT-09-0996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luther N, Zhou Z, Zanzonico P, Cheung NK, Humm J, Edgar MA, et al. The potential of theragnostic (1)(2)(4)I-8H9 convection-enhanced delivery in diffuse intrinsic pontine glioma. Neuro-Oncology. 2014;16(6):800–6. https://doi.org/10.1093/neuonc/not298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ho SL, Singh R, Zhou Z, Lavi E, Souweidane MM. Toxicity evaluation of prolonged convection-enhanced delivery of small-molecule kinase inhibitors in naive rat brainstem. Childs Nerv Syst. 2014; https://doi.org/10.1007/s00381-014-2568-3.

  94. Giese H, Hoffmann KT, Winkelmann A, Stockhammer F, Jallo GI, Thomale UW. Precision of navigated stereotactic probe implantation into the brainstem. J Neurosurg Pediatr. 2010;5(4):350–9. https://doi.org/10.3171/2009.10.PEDS09292.

    Article  PubMed  Google Scholar 

  95. Pincus DW, Richter EO, Yachnis AT, Bennett J, Bhatti MT, Smith A. Brainstem stereotactic biopsy sampling in children. J Neurosurg. 2006;104(2 Suppl):108–14. https://doi.org/10.3171/ped.2006.104.2.108.

    Article  PubMed  Google Scholar 

  96. Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, et al. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007;107(1 Suppl):1–4. https://doi.org/10.3171/PED-07/07/001.

    Article  PubMed  Google Scholar 

  97. Barua NU, Lowis SP, Woolley M, O'Sullivan S, Harrison R, Gill SS. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir. 2013;155(8):1459–65. https://doi.org/10.1007/s00701-013-1700-6.

    Article  CAS  PubMed  Google Scholar 

  98. Chittiboina P, Heiss JD, Warren KE, Lonser RR. Magnetic resonance imaging properties of convective delivery in diffuse intrinsic pontine gliomas. J Neurosurg Pediatr. 2014;13(3):276–82. https://doi.org/10.3171/2013.11.PEDS136.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Anderson RC, Kennedy B, Yanes CL, Garvin J, Needle M, Canoll P, et al. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr. 2013;11(3):289–95. https://doi.org/10.3171/2012.10.PEDS12142.

    Article  PubMed  Google Scholar 

  100. Heiss JD, Jamshidi A, Shah S, Martin S, Wolters PL, Argersinger DP, et al. Phase I trial of convection-enhanced delivery of IL13-Pseudomonas toxin in children with diffuse intrinsic pontine glioma. J Neurosurg Pediatr. 2018;23(3):333–42. https://doi.org/10.3171/2018.9.PEDS17225.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–50. https://doi.org/10.1016/S1470-2045(18)30322-X.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Eckman WW, Patlak CS, Fenstermacher JD. A critical evaluation of the principles governing the advantages of intra-arterial infusions. J Pharmacokinet Biopharm. 1974;2(3):257–85.

    Article  CAS  PubMed  Google Scholar 

  103. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Phys. 1972;223(2):323–31. https://doi.org/10.1152/ajplegacy.1972.223.2.323.

    Article  CAS  Google Scholar 

  104. Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest. 1979;64(2):684–8. https://doi.org/10.1172/JCI109509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Joshi S, Cooke JRN, Ellis JA, Emala CW, Bruce JN. Targeting brain tumors by intra-arterial delivery of cell-penetrating peptides: a novel approach for primary and metastatic brain malignancy. J Neuro-Oncol. 2017;135(3):497–506. https://doi.org/10.1007/s11060-017-2615-5.

    Article  CAS  Google Scholar 

  106. Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics. 2008;48(4):279–96. https://doi.org/10.1016/j.ultras.2008.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirschberg H, Uzal FA, Chighvinadze D, Zhang MJ, Peng Q, Madsen SJ. Disruption of the blood-brain barrier following ALA-mediated photodynamic therapy. Lasers Surg Med. 2008;40(8):535–42. https://doi.org/10.1002/lsm.20670.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hirschberg H, Zhang MJ, Gach HM, Uzal FA, Peng Q, Sun CH, et al. Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J Neuro-Oncol. 2009;95(3):317–29. https://doi.org/10.1007/s11060-009-9930-4.

    Article  CAS  Google Scholar 

  109. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–6. https://doi.org/10.1148/radiol.2202001804.

    Article  CAS  PubMed  Google Scholar 

  110. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage. 2005;24(1):12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046.

    Article  PubMed  Google Scholar 

  111. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol. 2005;31(11):1527–37. https://doi.org/10.1016/j.ultrasmedbio.2005.07.010.

    Article  PubMed  Google Scholar 

  112. Vykhodtseva NI, Hynynen K, Damianou C. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol. 1995;21(7):969–79.

    Article  CAS  PubMed  Google Scholar 

  113. Choi JJ, Pernot M, Small SA, Konofagou EE. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol. 2007;33(1):95–104. https://doi.org/10.1016/j.ultrasmedbio.2006.07.018.

    Article  PubMed  Google Scholar 

  114. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  Google Scholar 

  115. Stummer W, Gotz C, Hassan A, Heimann A, Kempski O. Kinetics of Photofrin II in perifocal brain edema. Neurosurgery. 1993;33(6):1075–81; discussion 81-2.

    CAS  PubMed  Google Scholar 

  116. Hebeda KM, Saarnak AE, Olivo M, Sterenborg HJ, Wolbers JG. 5-Aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir. 1998;140(5):503–12; discussion 12-3.

    Article  CAS  PubMed  Google Scholar 

  117. Ito S, Rachinger W, Stepp H, Reulen HJ, Stummer W. Oedema formation in experimental photo-irradiation therapy of brain tumours using 5-ALA. Acta Neurochir. 2005;147(1):57–65; discussion. https://doi.org/10.1007/s00701-004-0422-1.

    Article  CAS  PubMed  Google Scholar 

  118. Sporn LA, Foster TH. Photofrin and light induces microtubule depolymerization in cultured human endothelial cells. Cancer Res. 1992;52(12):3443–8.

    CAS  PubMed  Google Scholar 

  119. Fingar VH. Vascular effects of photodynamic therapy. J Clin Laser Med Surg. 1996;14(5):323–8. https://doi.org/10.1089/clm.1996.14.323.

    Article  CAS  PubMed  Google Scholar 

  120. Hu SS, Cheng HB, Zheng YR, Zhang RY, Yue W, Zhang H. Effects of photodynamic therapy on the ultrastructure of glioma cells. Biomed Environ Sci. 2007;20(4):269–73.

    CAS  PubMed  Google Scholar 

  121. Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999;59(6):1180–3.

    CAS  PubMed  Google Scholar 

  122. Worthington RW, Mulders MS. Effect of Clostridium perfringens epsilon toxin on the blood brain barrier of mice. Onderstepoort J Vet Res. 1975;42(1):25–7.

    CAS  PubMed  Google Scholar 

  123. Nagahama M, Sakurai J. Distribution of labeled Clostridium perfringens epsilon toxin in mice. Toxicon. 1991;29(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  124. Dorca-Arevalo J, Soler-Jover A, Gibert M, Popoff MR, Martin-Satue M, Blasi J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131(1–2):14–25. https://doi.org/10.1016/j.vetmic.2008.02.015.

    Article  CAS  PubMed  Google Scholar 

  125. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41(5):1967–72.

    CAS  PubMed  Google Scholar 

  126. Ozols RF, Cunnion RE, Klecker RW Jr, Hamilton TC, Ostchega Y, Parrillo JE, et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol. 1987;5(4):641–7. https://doi.org/10.1200/JCO.1987.5.4.641.

    Article  CAS  PubMed  Google Scholar 

  127. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 1991;51(16):4226–33.

    CAS  PubMed  Google Scholar 

  128. Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR. Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999;59(16):3944–8.

    CAS  PubMed  Google Scholar 

  129. Friedenberg WR, Rue M, Blood EA, Dalton WS, Shustik C, Larson RA, et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer. 2006;106(4):830–8. https://doi.org/10.1002/cncr.21666.

    Article  CAS  PubMed  Google Scholar 

  130. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood. 2002;100(4):1224–32.

    Article  CAS  PubMed  Google Scholar 

  131. Rubin EH, de Alwis DP, Pouliquen I, Green L, Marder P, Lin Y, et al. A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin Cancer Res. 2002;8(12):3710–7.

    CAS  PubMed  Google Scholar 

  132. Sandler A, Gordon M, De Alwis DP, Pouliquen I, Green L, Marder P, et al. A phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res. 2004;10(10):3265–72. https://doi.org/10.1158/1078-0432.CCR-03-0644.

    Article  CAS  PubMed  Google Scholar 

  133. Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine. 2016;11:5381–414. https://doi.org/10.2147/IJN.S117210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vieira DB, Gamarra LF. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo). 2016;14(1):99–103. https://doi.org/10.1590/S1679-45082016RB3475.

    Article  Google Scholar 

  135. Chen H, Tang L, Qin Y, Yin Y, Tang J, Tang W, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci. 2010;40(2):94–102. https://doi.org/10.1016/j.ejps.2010.03.007.

    Article  CAS  PubMed  Google Scholar 

  136. Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33(3):916–24. https://doi.org/10.1016/j.biomaterials.2011.10.035.

    Article  CAS  PubMed  Google Scholar 

  137. Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, et al. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neuro-Oncol. 2008;87(3):287–94. https://doi.org/10.1007/s11060-008-9522-8.

    Article  CAS  Google Scholar 

  138. Nair Madhavan PN, Saiyed Zainulabedin M, inventors; FLORIDA INTERNAT UNIVERSITY BOARD OF TRUSTEES, assignee. Magnetic Nanodelivery of Therapeutic Agents Across the Blood Brain Barrier2009 2009/08/28/Application date.

    Google Scholar 

  139. Arumugam K, Subramanian GS, Mallayasamy SR, Averineni RK, Reddy MS, Udupa N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharma. 2008;58(3):287–97. https://doi.org/10.2478/v10007-008-0014-3.

    Article  CAS  Google Scholar 

  140. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci. 2010;99(4):1745–61. https://doi.org/10.1002/jps.21939.

    Article  CAS  PubMed  Google Scholar 

  141. Garcia-Garcia E, Andrieux K, Gil S, Kim HR, Le Doan T, Desmaele D, et al. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm. 2005;298(2):310–4. https://doi.org/10.1016/j.ijpharm.2005.03.030.

    Article  CAS  PubMed  Google Scholar 

  142. Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target. 2006;14(4):191–214. https://doi.org/10.1080/10611860600650086.

    Article  CAS  PubMed  Google Scholar 

  143. Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm. 2007;344(1–2):103–9. https://doi.org/10.1016/j.ijpharm.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  144. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759–71. https://doi.org/10.1007/s11095-007-9379-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target. 2006;14(1):45–53. https://doi.org/10.1080/10611860600612953.

    Article  CAS  PubMed  Google Scholar 

  146. Pang Z, Gao H, Yu Y, Chen J, Guo L, Ren J, et al. Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int J Pharm. 2011;415(1–2):284–92. https://doi.org/10.1016/j.ijpharm.2011.05.063.

    Article  CAS  PubMed  Google Scholar 

  147. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 2009;137(1):78–86. https://doi.org/10.1016/j.jconrel.2009.03.002.

    Article  CAS  PubMed  Google Scholar 

  148. Joshi BH, Puri RA, Leland P, Varricchio F, Gupta G, Kocak M, et al. Identification of interleukin-13 receptor alpha2 chain overexpression in situ in high-grade diffusely infiltrative pediatric brainstem glioma. Neuro-Oncology. 2008;10(3):265–74. 15228517-2007-066 [pii]. https://doi.org/10.1215/15228517-2007-066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Okada H, Low KL, Kohanbash G, McDonald HA, Hamilton RL, Pollack IF. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J Neuro-Oncol. 2008;88(3):245–50. https://doi.org/10.1007/s11060-008-9566-9.

    Article  CAS  Google Scholar 

  150. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61. https://doi.org/10.1126/science.1232245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20(12):1394–6. https://doi.org/10.1038/nm.3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wiese M, Schill F, Sturm D, Pfister S, Hulleman E, Johnsen SA, et al. No significant cytotoxic effect of the EZH2 inhibitor Tazemetostat (EPZ-6438) on pediatric glioma cells with wildtype Histone 3 or mutated histone 3.3. Klin Padiatr. 2016;228(3):113–7. https://doi.org/10.1055/s-0042-105292.

    Article  CAS  PubMed  Google Scholar 

  153. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I, et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 2017;23(4):483–92. https://doi.org/10.1038/nm.4293.

    Article  CAS  PubMed  Google Scholar 

  154. Orzan F, Pellegatta S, Poliani PL, Pisati F, Caldera V, Menghi F, et al. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol. 2011;37(4):381–94. https://doi.org/10.1111/j.1365-2990.2010.01132.x.

    Article  CAS  PubMed  Google Scholar 

  155. de Vries NA, Hulsman D, Akhtar W, de Jong J, Miles DC, Blom M, et al. Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression. Cell Rep. 2015; https://doi.org/10.1016/j.celrep.2014.12.028.

  156. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer. 2012;12(12):818–34. https://doi.org/10.1038/nrc3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014;506(7489):445–50. https://doi.org/10.1038/nature13108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5. https://doi.org/10.1038/ng.518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol. 2009;27(12):2052–8. https://doi.org/10.1200/JCO.2008.19.0694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology. 2012;14(2):215–21. https://doi.org/10.1093/neuonc/nor198.

    Article  CAS  PubMed  Google Scholar 

  161. Galanis E, Anderson SK, Miller CR, Sarkaria JN, Jaeckle K, Buckner JC, et al. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02. Neuro-Oncology. 2018;20(4):546–56. https://doi.org/10.1093/neuonc/nox161.

    Article  CAS  PubMed  Google Scholar 

  162. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555–9. https://doi.org/10.1038/nm.3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang ZJ, Ge Y, Altinok D, Poulik J, Sood S, Taub JW, et al. Concomitant use of panobinostat and reirradiation in progressive DIPG: report of 2 cases. J Pediatr Hematol Oncol. 2017;39(6):e332–e5. https://doi.org/10.1097/MPH.0000000000000806.

    Article  PubMed  Google Scholar 

  164. Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J. 2006;8(3):E532–51. https://doi.org/10.1208/aapsj080363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thomas DL, Kim M, Bowerman NA, Narayanan S, Kranz DM, Schreiber H, et al. Recurrence of intracranial tumors following adoptive T cell therapy can be prevented by direct and indirect killing aided by high levels of tumor antigen cross-presented on stromal cells. J Immunol. 2009;183(3):1828–37. https://doi.org/10.4049/jimmunol.0802322.

    Article  CAS  PubMed  Google Scholar 

  166. Binder DC, Engels B, Arina A, Yu P, Slauch JM, Fu YX, et al. Antigen-specific bacterial vaccine combined with anti-PD-L1 rescues dysfunctional endogenous T cells to reject long-established cancer. Cancer Immunol Res. 2013;1(2):123–33. https://doi.org/10.1158/2326-6066.CIR-13-0058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Brooks CL, Schietinger A, Borisova SN, Kufer P, Okon M, Hirama T, et al. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc Natl Acad Sci U S A. 2010;107(22):10056–61. https://doi.org/10.1073/pnas.0915176107.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol. 2008;20(5):276–85. https://doi.org/10.1016/j.smim.2008.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29(3):330–6. https://doi.org/10.1200/JCO.2010.30.7744.

    Article  CAS  PubMed  Google Scholar 

  170. Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity. 1995;2(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  171. Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol. 2007;25(16):2288–94. https://doi.org/10.1200/JCO.2006.08.0705.

    Article  CAS  PubMed  Google Scholar 

  172. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11(4):1462–6. https://doi.org/10.1158/1078-0432.CCR-04-1737.

    Article  CAS  PubMed  Google Scholar 

  173. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9. https://doi.org/10.1200/JCO.2010.28.6963.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology. 2015;17(6):854–61. https://doi.org/10.1093/neuonc/nou348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology. 2011;13(3):324–33. https://doi.org/10.1093/neuonc/noq157.

    Article  CAS  PubMed  Google Scholar 

  176. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Potter DM, et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol. 2014;32(19):2050–8. https://doi.org/10.1200/JCO.2013.54.0526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  179. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65. https://doi.org/10.1016/S1470-2045(12)70090-6.

    Article  CAS  PubMed  Google Scholar 

  181. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7. https://doi.org/10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  182. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. https://doi.org/10.1126/scitranslmed.3003689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–80. https://doi.org/10.1073/pnas.0915174107.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/NEJMoa1414428.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. https://doi.org/10.1056/NEJMc1509660.

    Article  PubMed  Google Scholar 

  186. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20):5290–301. https://doi.org/10.1158/1078-0432.CCR-14-0514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kline C, Liu SJ, Duriseti S, Banerjee A, Nicolaides T, Raber S, et al. Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neuro-Oncol. 2018;140(3):629–38. https://doi.org/10.1007/s11060-018-2991-5.

    Article  CAS  Google Scholar 

  188. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27. https://doi.org/10.1158/0008-5472.CAN-11-1620.

    Article  CAS  PubMed  Google Scholar 

  189. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94. https://doi.org/10.1084/jem.20100643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211(4):715–25. https://doi.org/10.1084/jem.20130590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS One. 2014;9(7):e101764. https://doi.org/10.1371/journal.pone.0101764.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med. 1995;181(5):1653–9.

    Article  CAS  PubMed  Google Scholar 

  193. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20(1):70–5. https://doi.org/10.1038/nbt0102-70.

    Article  CAS  PubMed  Google Scholar 

  194. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74(13):3466–76. https://doi.org/10.1158/0008-5472.CAN-14-0296.

    Article  CAS  PubMed  Google Scholar 

  197. Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010;16(2):474–85. https://doi.org/10.1158/1078-0432.CCR-09-1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015;7(275):275ra22. https://doi.org/10.1126/scitranslmed.aaa4963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas. Nat Med. 2018;24(5):572–9. https://doi.org/10.1038/s41591-018-0006-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252(5007):854–6.

    Article  CAS  PubMed  Google Scholar 

  201. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000;7(10):867–74. https://doi.org/10.1038/sj.gt.3301205.

    Article  CAS  PubMed  Google Scholar 

  202. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 2000;7(10):859–66.

    Article  CAS  PubMed  Google Scholar 

  203. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci U S A. 2000;97(5):2208–13. https://doi.org/10.1073/pnas.040557897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3(6):639–45.

    Article  CAS  PubMed  Google Scholar 

  205. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Terrier-Lacombe MJ, et al. Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res. 2002;62(3):764–72.

    CAS  PubMed  Google Scholar 

  206. Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004;10(5):958–66. https://doi.org/10.1016/j.ymthe.2004.07.021.

    Article  CAS  PubMed  Google Scholar 

  207. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003;95(9):652–60.

    Article  CAS  PubMed  Google Scholar 

  208. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):1419–27. https://doi.org/10.1200/JCO.2017.75.8219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David J. Pisapia, MD, for providing histology and immunohistochemistry photographs of DIPG.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Z., Souweidane, M.M. (2020). Future Therapies for Malignant Brainstem Tumors. In: Jallo, G., Noureldine, M., Shimony, N. (eds) Brainstem Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-38774-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38774-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38773-0

  • Online ISBN: 978-3-030-38774-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics