Skip to main content

Leveraging Unmanned Aerial Vehicles in Mining Industry: Research Opportunities and Challenges

  • Chapter
  • First Online:
Book cover Unmanned Aerial Vehicles in Smart Cities

Part of the book series: Unmanned System Technologies ((UST))

Abstract

In recent times, unmanned aerial vehicle (UAV) also known as drone has been extensively used to study the scope of such technology in a range of applications including emergency communication coverage, agriculture, search and rescue, temporary wireless communication coverage, packet delivery, smart city deployments, defense, etc. Acknowledging the features offered by UAVs in different application domains, here we describe a vision for leveraging UAVs with wireless sensor networks to enhance the ability of mining operations and to provide a safe work environment to the miners in both routine and emergency scenarios. The main contributions of this chapter are threefold. First, it critically presents the potential applications of UAVs in mine and their use cases. Second, it provides and discusses the basic wireless networking architecture for such high-stress work environment. Furthermore, different design challenges are also discussed in detail. Third, considering a mine disaster scenario, we propose a UAV based multi-hop emergency communication system. Different performance metrics such as packet error rate, delay, and number of retransmissions per packet have been used to study the proposed emergency communication framework. The proposed system will assist the miners and rescue team members in case of an emergency and improves the quality of experience to the end users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coal (2016–2017) Provisional Coal Statistics, Coal Controller’s Organization. Accessed 1 Jan 2018. http://www.coalcontroller.gov.in/writereaddata/files/download/provisionalcoalstat/ProvisionalCoalStat2016-17.pdf

  2. CMPDI, Annual report & accounts. Accessed 12 Mar 2016. http://www.cmpdi.co.in/accounts/CMPDIAnnualReport2015-16.pdf

  3. L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2016)

    Article  Google Scholar 

  4. S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutorials 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  5. A. Ranjan, B. Panigrahi, H.K. Rath, P. Misra, A. Simha, LTE-CAS: LTE-based criticality aware scheduling for UAV assisted emergency response, in IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (IEEE, Piscataway, 2018), pp. 894–899

    Book  Google Scholar 

  6. A. Forooshani, S. Bashir, D. Michelson, S. Noghanian, A survey of wireless communications and propagation modeling in underground mines. IEEE Commun. Surv. Tutorials 15, 1524–1545 (2013)

    Article  Google Scholar 

  7. A. Ranjan, H. Sahu, P. Misra, Wireless sensor networks: an emerging solution for underground mines. Int. J. Appl. Evol. Comput. 7(4), 1–27 (2016)

    Article  Google Scholar 

  8. A. Ranjan, P. Misra, B. Dwivedi, H. Sahu, Studies on propagation characteristics of radio waves for wireless networks in underground coal mines. Wirel. Pers. Commun. 97(2), 2819–2832 (2017)

    Article  Google Scholar 

  9. F. Al-Turjman, A novel approach for drones positioning in mission critical applications. Trans. Emerg. Telecommun. Technol. 2019, e3603 (2019)

    Article  Google Scholar 

  10. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Drone small cells in the clouds: design, deployment and performance analysis, in Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2015), pp. 1–6

    Google Scholar 

  11. M. Di Felice, A. Trotta, L. Bedogni, K.R. Chowdhury, L. Bononi, Self-organizing aerial mesh networks for emergency communication, in 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (IEEE, Piscataway, 2014), pp. 1631–1636

    Google Scholar 

  12. S. Lee, Y. Choi, Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle (drone). Tunn. Undergr. Space Technol. 25(5), 462–469 (2015)

    Article  Google Scholar 

  13. Aibotix, Survey and mapping (2017). Accessed 18 June 2017. https://aibotix.com/industries/surveying-and-mapping

  14. Prioria, Volume calculation using UAVs (2017). Accessed 20 Apr 2017. http://www.prioria.com/volume/

  15. P. Raeva, S. Filipova, D. Filipov, Volume computation of a stockpile—a study case comparing GPS and UAV measurements in an open pit quarry, in The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 41 (2016), p. 999

    Google Scholar 

  16. R.K. Rhodes, UAS as an inventory tool: a photogrammetric approach to volume estimation. Ph.D. Dissertation, University of Arkansas, 2017

    Google Scholar 

  17. G. Esposito, G. Mastrorocco, R. Salvini, M. Oliveti, P. Starita, Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 76(3), 103 (2017)

    Google Scholar 

  18. P. Rossi, F. Mancini, M. Dubbini, F. Mazzone, A. Capra, Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. Eur. J. Remote Sens. 50(1), 211–221 (2017)

    Article  Google Scholar 

  19. J. Suh, Y. Choi, Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ. Earth Sci. 76(4), 144 (2017)

    Google Scholar 

  20. DGMS, Annual report (2016), pp. 1–75. Accessed 12 Aug 2017. http://dgms.gov.in/writereaddata/UploadFile/STDNOTE-1-1-2016636047840119597695.pdf

  21. T. Bamford, K. Esmaeili, A.P. Schoellig, A real-time analysis of post-blast rock fragmentation using UAV technology. Int. J. Min. Reclam. Environ. 31(6), 439–456 (2017)

    Article  Google Scholar 

  22. J.N. Carras, S.J. Day, A. Saghafi, D.J. Williams, Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. Coal Geol. 78(2), 161–168 (2009)

    Article  Google Scholar 

  23. H. Sahu, S. Mahapatra, D. Panigrahi, An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals. Int. J. Coal Geol. 80(3–4), 175–180 (2009)

    Article  Google Scholar 

  24. Hexagon, UAV based monitoring (2017). Accessed 12 May 2017. http://hexagon.com/en

  25. M. Francioni, R. Salvini, D. Stead, J. Coggan, Improvements in the integration of remote sensing and rock slope modelling. Nat. Hazards 90(2), 975–1004 (2018)

    Article  Google Scholar 

  26. R. Salvini, G. Mastrorocco, G. Esposito, S. Di Bartolo, J. Coggan, C. Vanneschi, Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat. Hazards Earth Syst. Sci. 18(1), 287 (2018)

    Google Scholar 

  27. D. Creedy, W. Lijie, Z. Xinquan, L. Haibin, G. Campbell, Transforming China’s coal mines: a case history of the Shuangliu mine. Nat. Res. Forum 30(1), 15–26

    Google Scholar 

  28. Y. Nishimura, T. Osafune, S. Kato, A. Hiromori, H. Yamaguchi, T. Higashino, Vehicle proximity awareness by inter-vehicle communication for surface mine operation safety, in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (IEEE, Piscataway, 2017), pp. 1–7

    Google Scholar 

  29. senseFly, 3d modeling and mapping (2017). Accessed 12 Apr 2017. http://www.sensesfly.com/

  30. Barrick, UAV based 3d modeling in mines (2017). Accessed 23 Jul 2017. http://www.barrick.com/operations/pueblo-viejo/default.aspx

  31. S. Nicoll, N. Bar, P. du Plessis, Managing risks on an active haul road adjacent to a propagating subsidence zone at Telfer gold mine. Proc. Eng. 191, 172–178 (2017)

    Article  Google Scholar 

  32. R. Jackisch, S. Lorenz, R. Zimmermann, R. Möckel, R. Gloaguen, Drone-borne hyperspectral monitoring of acid mine drainage: an example from the Sokolov lignite district. Remote Sens. 10(3), 385 (2018)

    Google Scholar 

  33. S. Jakob, R. Zimmermann, R. Gloaguen, The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: MEPHySTo a toolbox for pre-processing drone-borne hyperspectral data. Remote Sens. 9(1), 88–101 (2017)

    Article  Google Scholar 

  34. A. Rauhala, A. Tuomela, C. Davids, P.M. Rossi, UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Remote Sens. 9(12), 1318 (2017)

    Google Scholar 

  35. T. Carlà, P. Farina, E. Intrieri, K. Botsialas, N. Casagli, On the monitoring and early-warning of brittle slope failures in hard rock masses: examples from an open-pit mine. Eng. Geol. 228, 71–81 (2017)

    Article  Google Scholar 

  36. A. Tscharf, M. Rumpler, F. Fraundorfer, G. Mayer, H. Bischof, On the use of UAVs in mining and archaeology-geo-accurate 3d reconstructions using various platforms and terrestrial views. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2(1), 15 (2015)

    Google Scholar 

  37. F. Al-Turjman, Cognitive routing protocol for disaster-inspired internet of things. Futur. Gener. Comput. Syst. 92, 1103–1115 (2019)

    Article  Google Scholar 

  38. F. Al-Turjman, S. Alturjman, 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multim. Tools Appl., 1–22 (2018). https://doi.org/10.1007/s11042-018-6288-7

  39. F. Al-Turjman, Mobile couriers selection for the smart-grid in smart-cities pervasive sensing. Futur. Gener. Comput. Syst. 82, 327–341 (2018)

    Article  Google Scholar 

  40. B. Panigrahi, H.K. Rath, P.K. Misra, A. Simha, A. Ranjan, Aerial communication framework for providing communication services to users trapped in emergency. Patent, U.S. Patent Application 15/920,722, 8 Jan, 2019

    Google Scholar 

  41. F. Al-Turjman, M. Abujubbeh, IoT-enabled smart grid via SM: an overview. Futur. Gener. Comput. Syst. 96, 579–590 (2019)

    Article  Google Scholar 

  42. R.J. Kerczewski, J.H. Griner, Control and non-payload communications links for integrated unmanned aircraft operations (2012)

    Google Scholar 

  43. E. Pastor, J. Lopez, P. Royo, UAV payload and mission control hardware/software architecture. IEEE Aerosp. Electron. Syst. Mag. 22(6), 3–8 (2007)

    Article  Google Scholar 

  44. H. Chen, X.-M. Wang, Y. Li, A survey of autonomous control for UAV, in International Conference on Artificial Intelligence and Computational Intelligence, 2009. AICI’09 (IEEE, Piscataway, 2009), pp. 267–271

    Google Scholar 

  45. D.W. Matolak, R. Sun, Air-ground channel characterization for unmanned aircraft systems: the near-urban environment, in MILCOM 2015-2015 IEEE Military Communications Conference (IEEE, Piscataway, 2015), pp. 1656–1660

    Google Scholar 

  46. A. Al-Hourani, S. Kandeepan, A. Jamalipour, Modeling air-to-ground pathloss for low altitude platforms in urban environments, in Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2014), pp. 2898–2904

    Google Scholar 

  47. M. Bacco, E. Ferro, A. Gotta, Radio propagation models for UAVs: what is missing? in Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014), pp. 391–392

    Google Scholar 

  48. M. Erdelj, E. Natalizio, UAV-assisted disaster management: applications and open issues, in International Conference on Computing, Networking and Communications (ICNC) (IEEE, Piscataway, 2016), pp. 1–5

    Google Scholar 

  49. D. Jeong, S.-Y. Park, H. Lee, DroneNet: network reconstruction through sparse connectivity probing using distributed UAVs, in 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (IEEE, Piscataway, 2015), pp. 1797–1802

    Google Scholar 

  50. D.W. Matolak, R. Sun, Air ground channel characterization for unmanned aircraft systems part III: the suburban and near-urban environments. IEEE Trans. Veh. Technol. 66(8), 6607–6618 (2017)

    Article  Google Scholar 

  51. M. Bacco, E. Ferro, A. Gotta, UAVs in WSNs for agricultural applications: an analysis of the two-ray radio propagation model, in IEEE Sensors (IEEE, Piscataway, 2014), pp. 130–133

    Google Scholar 

  52. E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, C. Bettstetter, Drone networks: communications, coordination, and sensing. Ad Hoc Netw. 68, 1–15 (2018)

    Article  Google Scholar 

  53. A. Ranjan, B. Panigrahi, H. Sahu, P. Misra, SkyHelp: UAV assisted emergency communication in deep open pit mines, in Proceedings of the 1st International Workshop on Internet of People, Assistive Robots and Things (ACM, New York, 2018), pp. 31–36

    Google Scholar 

  54. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Wireless communication using unmanned aerial vehicles (UAVs): optimal transport theory for hover time optimization (2017). arXiv:1704.04813

    Google Scholar 

  55. A. Al-Hourani, S. Kandeepan, S. Lardner, Optimal lap altitude for maximum coverage. IEEE Wireless Commun. Lett. 3(6), 569–572 (2014)

    Article  Google Scholar 

  56. F. Al-Turjman, 5G-enabled devices and smart-spaces in social-IoT: an overview. Futur. Gener. Comput. Syst. 92, 732–744 (2019)

    Article  Google Scholar 

  57. M.Z. Hasan, F. Al-Turjman, Swarm-based data delivery in social internet of things, in Smart Things and Femtocells (CRC Press, Boca Raton, 2018), pp. 179–218

    Google Scholar 

  58. Boing Boing, Inside a mile deep open pit (2013). Accessed 12 Jan 2018. https://boingboing.net/2013/04/22/inside-a-mile-deep-open-pit-co.html

  59. E.P.L. De Almeida, G. Caldwell, I.R. Larrad, S. Abreu, R. Vieira, V.S. Barbosa, T.B. Sørensen, P.E. Mogensen, L.G.U. Garcia, Radio propagation in open-pit mines: a first look at measurements in the 2.6 GHz band, in 2017-IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, Piscataway, 2017)

    Google Scholar 

  60. R. Nilsson, J. van de Beek, Channel measurements in an open-pit mine using USRPs: 5G—expect the unexpected, in 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (IEEE, Piscataway, 2016), pp. 212–217

    Book  Google Scholar 

  61. A. Hrovat, G. Kandus, T. Javornik, A survey of radio propagation modeling for tunnels. IEEE Commun. Surv. Tutorials 16(2), 658–669 (2014)

    Article  Google Scholar 

  62. A. Ranjan, H. Sahu, P. Misra, MineSense: sensing the radio signal behavior in metal and non-metal underground mines. Wireless Netw. 25, 1–13 (2019)

    Article  Google Scholar 

  63. A. Ranjan, P. Misra, H. Sahu, Experimental measurements and channel modeling for wireless communication networks in underground mine environments, in 2017 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, Piscataway, 2017), pp. 1345–1349

    Google Scholar 

  64. V.S. Barbosa, L.G. Garcia, G. Caldwell, H. Lima, The challenge of wireless connectivity to support intelligent mines, in 24th World Mining Congress 2016 (IBRAM, 2016), pp. 105–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Ranjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjan, A., Sahu, H.B., Misra, P., Panigrahi, B. (2020). Leveraging Unmanned Aerial Vehicles in Mining Industry: Research Opportunities and Challenges. In: Al-Turjman, F. (eds) Unmanned Aerial Vehicles in Smart Cities. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-38712-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38712-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38711-2

  • Online ISBN: 978-3-030-38712-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics