Skip to main content

A Comprehensive Review on the Use of AI in UAV Communications: Enabling Technologies, Applications, and Challenges

  • Chapter
  • First Online:
Unmanned Aerial Vehicles in Smart Cities

Part of the book series: Unmanned System Technologies ((UST))

Abstract

Artificial intelligence (AI) has a great capability to deal with big data and complexity as well as speedy and high-accuracy processing. AI algorithms along with robotics can be used to provide smarter environments. Recently, robots have been smart machines that use their AI abilities and smartness to perform intellectual and smart tasks. Among all the robot-based infrastructures, unmanned aerial vehicles (UAVs) are considered as one the most promising solutions regarding the development of smart environments. In this chapter, we provide an overview of the use of AI in UAV communications. Moreover, we overview applied communication protocols and technologies in UAV communications and discuss several AI-based classification and image-based techniques that are used for UAVs. In addition, we present open research issues associated with the AI-based UAV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Prieto, J.A. Becerra, F. Bellas, R.J. Duro, Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time. Robot. Auton. Syst. 58(12), 1282–1291 (2010)

    Article  Google Scholar 

  2. F. Dawood, C.K. Loo, Incremental episodic segmentation and imitative learning of humanoid robot through self-exploration. Neurocomputing 173, 1471–1484 (2016)

    Article  Google Scholar 

  3. R. Bianco, S. Nolfi, Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connect. Sci. 16(4), 227–248 (2004)

    Article  Google Scholar 

  4. M.A. Cappelli, Regulation on Safety and Civil Liability of Intelligent Autonomous Robots: The Case of Smart Cars, Doctoral dissertation, University of Trento, 2015

    Google Scholar 

  5. L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, Y. Yan, UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 146, 124–136 (2018)

    Article  Google Scholar 

  6. M.F. Ayub, F. Ghawash, M.A. Shabbir, M. Kamran, and F.A. Butt, Next generation security and surveillance system using autonomous vehicles, in IEEE Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS) (2018), pp. 1–5

    Google Scholar 

  7. G. Choudhary, V. Sharma, I. You, Sustainable and secure trajectories for the military Internet of Drones (IoD) through an efficient Medium Access Control (MAC) protocol. Comput. Electric. Eng. 74, 59–73 (2019)

    Article  Google Scholar 

  8. R. Ke, Z. Li, J. Tang, Z. Pan, Y. Wang, Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow. IEEE Trans. Intell. Transp. Syst. 99, 1–11 (2018)

    Google Scholar 

  9. X. Liu, D. He, H. Ding, Throughput maximization for UAV-enabled full-duplex relay system in 5G communications. Phys. Commun. 32, 104–111 (2019)

    Article  Google Scholar 

  10. M.N. Nguyen, L.D. Nguyen, T.Q. Duong, H.D. Tuan, Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wireless Commun. Lett. 8(1), 225–228 (2019)

    Article  Google Scholar 

  11. J. Tang, F. Liu, Y. Zou, W. Zhang, Y. Wang, An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Trans. Intell. Transp. Syst. 18(9), 2340–2350 (2017)

    Article  Google Scholar 

  12. K. Choi, I. Lee, J. Hong, T. Oh, S.W. Shin, Developing a UAV-based rapid mapping system for emergency response. Proc. SPIE 7332, 733209 (2009)

    Article  Google Scholar 

  13. D.J. Mulla, Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114(4), 358–371 (2013)

    Article  Google Scholar 

  14. H. Xiongkui, J. Bonds, A. Herbst, J. Langenakens, Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 10(3), 18–30 (2017)

    Google Scholar 

  15. L. Wang, Y. Lan, Y. Zhang, H. Zhang, M.N. Tahir, S. Ou, X. Liu, P. Chen, Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China. Sensors 19(3), 642 (2019)

    Article  Google Scholar 

  16. A. Mairaj, A.I. Baba, A.Y. Javaid, Application specific drone simulators: recent advances and challenges. Simul. Model. Pract. Theory 94, 100–117 (2019)

    Article  Google Scholar 

  17. A. Abdallah, M.Z. Ali, J. Mišić, V.B. Mišić, Efficient security scheme for disaster surveillance UAV communication networks. Information 10(2), 43 (2019)

    Article  Google Scholar 

  18. Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

    Article  Google Scholar 

  19. X.F. Liu, Z.W. Guan, Y.Q. Song, D.S. Chen, An optimization model of UAV route planning for road segment surveillance. J. Cent. South Univ. 21(6), 2501–2510 (2014)

    Article  Google Scholar 

  20. K.V. Najiya, and M. Archana, UAV video processing for traffic surveillance with enhanced vehicle detection, in IEEE Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (2018), pp. 662–668

    Google Scholar 

  21. X. Wang, R. Zhang, W. Song, L. Han, X. Liu, X. Sun, M. Luo, K. Chen, Y. Zhang, H. Yang, G. Yang, Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci. Rep. 9(1), 3458 (2019)

    Article  Google Scholar 

  22. Z. Liang, P. Pandey, V. Stoerger, Y. Xu, Y. Qiu, Y. Ge, J.C. Schnable, Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience 7(2), 1–11 (2017)

    Google Scholar 

  23. F. Holman, A. Riche, A. Michalski, M. Castle, M. Wooster, M. Hawkesford, High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 8(12), 1031 (2016)

    Article  Google Scholar 

  24. Y. Zhao, J. Li, X. Li, and Y. Hu, Low-altitude UAV imagery based cross-section geological feature recognition via deep transfer learning, in 3rd IEEE International Conference on Robotics and Automation Engineering (ICRAE) (2018), pp. 253–257

    Google Scholar 

  25. H. Sheng, H. Chao, C. Coopmans, J. Han, M. McKee, and Y. Chen, Low-cost UAV-based thermal infrared remote sensing: platform, calibration and applications, in Proceedings of IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (2010), pp. 38–43

    Google Scholar 

  26. S. Ullah, K.I. Kim, K.H. Kim, M. Imran, P. Khan, E. Tovar, F. Ali, UAV-enabled healthcare architecture: issues and challenges. Futur. Gener. Comput. Syst. 97, 425–432 (2019)

    Article  Google Scholar 

  27. R. Sokullu, A. Balcı, E. Demir, The role of drones in ambient assisted living systems for the elderly, in Enhanced Living Environments, (Springer, Cham, 2019), pp. 295–321

    Chapter  Google Scholar 

  28. J.C. Rosser Jr., V. Vignesh, B.A. Terwilliger, B.C. Parker, Surgical and medical applications of drones: a comprehensive review. J. Soc. Laparoendosc. Surg. 22(3), e2018.00018 (2018)

    Article  Google Scholar 

  29. A. Capolupo, S. Pindozzi, C. Okello, N. Fiorentino, L. Boccia, Photogrammetry for environmental monitoring: the use of drones and hydrological models for detection of soil contaminated by copper. Sci. Total Environ. 514, 298–306 (2015)

    Article  Google Scholar 

  30. K. Li, R.C. Voicu, S.S. Kanhere, W. Ni, E. Tovar, Energy efficient legitimate wireless surveillance of UAV communications. IEEE Trans. Veh. Technol. 68(3), 2283–2293 (2019)

    Article  Google Scholar 

  31. F. Tufano, C.V. Angelino, L. Cicala, Visual target detection and tracking in UAV EO/IR videos by moving background subtraction, in International Conference on Advanced Concepts for Intelligent Vision Systems, (Springer, Cham, 2016), pp. 547–558

    Chapter  Google Scholar 

  32. H. Kim, J. Ben-Othman, L. Mokdad, UDiPP: a framework for differential privacy preserving movements of unmanned aerial vehicles in smart cities. IEEE Trans. Veh. Technol. 68, 3933–3943 (2019)

    Article  Google Scholar 

  33. N.D. Dung, and J. Rohacs, The drone-following models in smart cities, in 59th IEEE International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2018), pp. 1–6

    Google Scholar 

  34. Z. Hu, Z. Bai, Y. Yang, Z. Zheng, K. Bian, L. Song, UAV aided aerial-ground IoT for air quality sensing in smart city: architecture, technologies, and implementation. IEEE Netw. 33(2), 14–22 (2019)

    Article  Google Scholar 

  35. Q. Gu, and C. Jia, A consumer UAV-based air quality monitoring system for smart cities, in IEEE International Conference on Consumer Electronics (ICCE) (2019), pp. 1–6

    Google Scholar 

  36. N. Mohamed, J. Al-Jaroodi, I. Jawhar, A. Idries, F. Mohammed, Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Chang. (2018) https://doi.org/10.1016/j.techfore.2018.05.004

  37. A. Guillen-Perez, R. Sanchez-Iborra, M.D. Cano, J.C. Sanchez-Aarnoutse, and J. Garcia-Haro, WiFi networks on drones, in ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT) (2016), pp. 1–8

    Google Scholar 

  38. E. Ferro, F. Potorti, Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. IEEE Wirel. Commun. 12(1), 12–26 (2005)

    Article  Google Scholar 

  39. S. Hayat, E. Yanmaz, and C. Bettstetter, Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11 n and 802.11 ac, in 26th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2015), pp. 1991–1996

    Google Scholar 

  40. I. Bisio, C. Garibotto, F. Lavagetto, A. Sciarrone, S. Zappatore, Blind detection: advanced techniques for WiFi-based drone surveillance. IEEE Trans. Veh. Technol. 68(1), 938–946 (2019)

    Article  Google Scholar 

  41. G.V. Crosby, and F. Vafa, Wireless sensor networks and LTE-A network convergence, in 38 th IEEE Annual Conference on Local Computer Networks (2013), pp. 731–734

    Google Scholar 

  42. S. Qazi, A.S. Siddiqui, and A.I. Wagan, UAV based real time video surveillance over 4G LTE, in IEEE International Conference on Open Source Systems & Technologies (ICOSST) (2015), pp. 141–145

    Google Scholar 

  43. F. Al-Turjman, E. Ever, H. Zahmatkesh, Small cells in the forthcoming 5G/IoT: traffic modelling and deployment overview. IEEE Commun. Surv. Tutor. 21(1), 28–65 (2019)

    Article  Google Scholar 

  44. F. Al-Turjman, E. Ever, H. Zahmatkesh, Green femtocells in the IoT era: traffic modeling and challenges—an overview. IEEE Netw. 31(6), 48–55 (2017)

    Article  Google Scholar 

  45. R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, H. Zhang, Intelligent 5G: When cellular networks meet artificial intelligence. IEEE Wirel. Commun. 24(5), 175–183 (2017)

    Article  Google Scholar 

  46. B. Bojović, E. Meshkova, N. Baldo, J. Riihijärvi, M. Petrova, Machine learning-based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments. EURASIP J. Wirel. Commun. Netw. 1, 183 (2016)

    Article  Google Scholar 

  47. I. Dalmasso, I. Galletti, R. Giuliano, and F. Mazzenga, WiMAX networks for emergency management based on UAVs, in 1st IEEE AESS European Conference on Satellite Telecommunications (ESTEL) (2012), pp. 1–6

    Google Scholar 

  48. D.A.A. Daw, K.B. Seman, M.B.M. Saudi, Forecasting the WiMAX traffic via modified artificial neural network MODELS. Int. J. Artif. Intell. Appl. 5(5), 33 (2014)

    Google Scholar 

  49. P. Kinney, Zigbee technology: wireless control that simply works, in Communications design conference (vol. 2, 2003), pp. 1–7

    Google Scholar 

  50. M. Bacco, A. Berton, A. Gotta, L. Caviglione, IEEE 802.15. 4 Air-Ground UAV communications in smart farming scenarios. IEEE Commun. Lett. 22(9), 1910–1913 (2018)

    Article  Google Scholar 

  51. M.D. R-Moreno, B. Castaño, D.F. Barrero, A.M. Hellín, Efficient services management in libraries using AI and wireless techniques. Expert Syst. Appl. 41(17), 7904–7913 (2014)

    Article  Google Scholar 

  52. J. de Carvalho Silva, J.J. Rodrigues, A.M. Alberti, P. Solic, and A.L. Aquino, LoRaWAN—a low power WAN protocol for Internet of Things: a review and opportunities, in 2nd IEEE International Multidisciplinary Conference on Computer and Energy Science (SpliTech) (2017), pp. 1–6

    Google Scholar 

  53. A. Raimundo, D. Fernandes, D. Gomes, O. Postolache, P. Sebastião, and F. Cercas, UAV GNSS position corrections based on IoT™ communication protocol, in IEEE International Symposium in Sensing and Instrumentation in IoT Era (ISSI) (2018), pp. 1–5

    Google Scholar 

  54. T. Bhatnagar, Application of artificial intelligence and LowPower Wide-Area Network (LPWAN) in the development of smart cities. Int. J. Res. Appl. Sci. Eng. Technol. 6(2), 1386–1389 (2018)

    Google Scholar 

  55. S. Hosseinzadeh, M. Almoathen, H. Larijani, K. Curtis, A neural network propagation model for LoRaWAN and critical analysis with real-world measurements. Big Data Cognit. Comput. 1(1), 7 (2017)

    Article  Google Scholar 

  56. L. Qiu, D. Jiang, and L. Hanlen, Neural network prediction of radio propagation, in Australian Communications Theory Workshop (2005), pp. 272–277

    Google Scholar 

  57. Q. Wu, G.Y. Li, W. Chen, D.W.K. Ng, R. Schober, An overview of sustainable green 5G networks. IEEE Wirel. Commun. 24(4), 72–80 (2017)

    Article  Google Scholar 

  58. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications. IEEE Trans. Wirel. Commun. 16(11), 7574–7589 (2017)

    Article  Google Scholar 

  59. A. Fouda, A.S. Ibrahim, I. Guvenc, and M. Ghosh, UAV-based in-band integrated access and backhaul for 5G communications, in 88th IEEE Vehicular Technology Conference (VTC-Fall) (2019), pp. 1–5

    Google Scholar 

  60. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans. Wirel. Commun. 15(6), 3949–3963 (2016)

    Article  Google Scholar 

  61. E. Kalantari, M.Z. Shakir, H. Yanikomeroglu, and A. Yongacoglu, Backhaul-aware robust 3D drone placement in 5G+ wireless networks, in IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 109–114

    Google Scholar 

  62. U. Challita, A. Ferdowsi, M. Chen, W. Saad, Machine learning for wireless connectivity and security of cellular-connected UAVs. IEEE Wirel. Commun. 26(1), 28–35 (2019)

    Article  Google Scholar 

  63. A. Sanjab, W. Saad, and T. Başar, Prospect theory for enhanced cyberphysical security of drone delivery systems: A network interdiction game, in Proceedings of IEEE International Conference on Communications (ICC), Paris, France (2017), pp. 1–6

    Google Scholar 

  64. J. Li, Y. Zhou, and L. Lamont, Communication architectures and protocols for networking unmanned aerial vehicles, in IEEE Globecom Workshops (2013), pp. 1415–1420

    Google Scholar 

  65. R.W. Beard, T.W. McLain, D.B. Nelson, D. Kingston, D. Johanson, Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  66. J. Li, Y. Bi, M. Lan, H. Qin, M. Shan, F. Lin, and B.M. Chen, Real-time simultaneous localization and mapping for UAV: a survey, in Proceeding of International Micro Air Vehicle Competition and Conference (2016), pp. 237–242

    Google Scholar 

  67. H.Y. Cheng, C.C. Weng, Y.Y. Chen, Vehicle detection in aerial surveillance using dynamic Bayesian networks. IEEE Trans. Image Process. 21(4), 2152–2159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. J.R. Braga, H.F. Velho, G. Conte, P. Doherty, and É.H. Shiguemori, An image matching system for autonomous UAV navigation based on neural network, in 14th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV) (2016), pp. 1–6

    Google Scholar 

  69. X. Le, J. Jo, S. Youngbo, D. Stantic, Detection and classification of vehicle types from moving backgrounds, in International Conference on Robot Intelligence Technology and Applications, (Springer, Cham, 2017), pp. 491–502

    Google Scholar 

  70. S. Sharafeddine, R. Islambouli, On-demand deployment of multiple aerial base stations for traffic offloading and network recovery. Comput. Netw. 156, 52–61 (2019)

    Article  Google Scholar 

  71. S. Lee, T. Shim, S. Kim, J. Park, K. Hong, and H. Bang, Vision-based autonomous landing of a multi-copter unmanned aerial vehicle using reinforcement learning, in International Conference on Unmanned Aircraft Systems (ICUAS) (2018), pp. 108–114

    Google Scholar 

  72. E. Zimudzi, I. Sanders, N. Rollings, C. Omlin, Segmenting mangrove ecosystems drone images using SLIC superpixels. Geocarto Int., 1–15 (2018)

    Google Scholar 

  73. M.N. Reza, I.S. Na, S.W. Baek, K.H. Lee, Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images. Biosyst. Eng. 177, 109–121 (2019)

    Article  Google Scholar 

  74. P. Shin, T. Sankey, M. Moore, A. Thode, Evaluating unmanned aerial vehicle images for estimating Forest canopy fuels in a ponderosa pine stand. Remote Sens. 10(8), 1266 (2018)

    Article  Google Scholar 

  75. S. Mukherjee, N. Sharma, Intrusion detection using naive Bayes classifier with feature reduction. Procedia Technol. 4, 119–128 (2012)

    Article  Google Scholar 

  76. H.M. Noaman, S. Elmougy, A. Ghoneim, and T. Hamza, Naive Bayes classifier based Arabic document categorization, in 7th IEEE International Conference on Informatics and Systems (INFOS) (2010), pp. 1–5

    Google Scholar 

  77. H.R. Marucci-Wellman, M.R. Lehto, H.L. Corns, A practical tool for public health surveillance: semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms. Accid. Anal. Prev. 84, 165–176 (2015)

    Article  Google Scholar 

  78. A.V. Dolgopolov, P.A. Kazantsev, N.N. Bezuhliy, Ship detection in images obtained from the unmanned aerial vehicle (UAV). Indian J. Sci. Technol. 9, 1–7 (2017)

    Google Scholar 

  79. I. Wiratsin, V. Suchaiporn, P. Trainorapong, J. Chaichinvara, S. Rattanajitdamrong, and N. Hnoohom, Classification of terrain types in unmanned aerial vehicle images, in IEEE International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP) (2018), pp. 1–6

    Google Scholar 

  80. A. de Castro, J. Torres-Sánchez, J. Peña, F. Jiménez-Brenes, O. Csillik, F. López-Granados, An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 10(2), 285 (2018)

    Article  Google Scholar 

  81. Y. Li, Vehicle Extraction Using Histogram and Genetic Algorithm Based Fuzzy Image Segmentation from High Resolution UAV Aerial Imagery, ISPRS08 (2008), pp. B3b, 529

    Google Scholar 

  82. G. Fu, C. Liu, R. Zhou, T. Sun, Q. Zhang, Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 9(5), 498 (2017)

    Article  Google Scholar 

  83. J.E. Ball, D.T. Anderson, C.S. Chan, Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J. Appl. Remot. Sens. 11(4), 042609 (2017)

    Article  Google Scholar 

  84. T.N. Sainath, A.R. Mohamed, B. Kingsbury, and B. Ramabhadran, Deep convolutional neural networks for LVCSR, in IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 8614–8618

    Google Scholar 

  85. P. Chamoso, W. Raveane, V. Parra, A. González, UAVs applied to the counting and monitoring of animals, in Ambient Intelligence-Software and Applications, (Springer, Cham, 2014), pp. 71–80

    Chapter  Google Scholar 

  86. N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, M. Zuair, Deep learning approach for car detection in UAV imagery. Remote Sens. 9(4), 312 (2017)

    Article  Google Scholar 

  87. G.J. Mendis, J. Wei, and A. Madanayake, Deep learning cognitive radar for micro UAS detection and classification, in Cognitive Communications for Aerospace Applications Workshop (CCAA) (2017), pp. 1–5

    Google Scholar 

  88. C.N. Duong, K. Luu, K.G. Quach, T.D. Bui, Deep appearance models: A deep Boltzmann machine approach for face modeling. Int. J. Comput. Vis. 127(5), 437–455 (2019)

    Article  MathSciNet  Google Scholar 

  89. X. Dai, Y. Zhou, S. Meng, and Q. Wu, Unsupervised feature fusion combined with neural network applied to UAV attitude estimation, in IEEE International Conference on Robotics and Biomimetics (ROBIO) (2018), pp. 874–879

    Google Scholar 

  90. R. Salakhutdinov and H. Larochelle, Efficient learning of deep Boltzmann machines, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010), pp. 693–700.

    Google Scholar 

  91. M. Rahnemoonfar, R. Murphy, M.V. Miquel, D. Dobbs, and A. Adams, Flooded area detection from uav images based on densely connected recurrent neural networks, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2018), pp. 1788–1791

    Google Scholar 

  92. S. Wang, B. Li, and Q. Geng, Research of RBF neural network PID control algorithm for longitudinal channel control of small UAV, in 10th IEEE International Conference on Control and Automation (ICCA) (2013), pp. 1824–1827

    Google Scholar 

  93. S.R.B. dos Santos, S.N. Givigi, and C.L.N. Júnior, An experimental validation of reinforcement learning applied to the position control of UAVs, in IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2012), pp. 2796–2802

    Google Scholar 

  94. J. Shin, H.J. Kim, Y. Kim, Adaptive support vector regression for UAV flight control. Neural Netw. 24(1), 109–120 (2011)

    Article  MATH  Google Scholar 

  95. H. Bou-Ammar, H. Voos, and W. Ertel, Controller design for quadrotor UAVs using reinforcement learning, in IEEE International Conference on Control Applications (2010), pp. 2130–2135

    Google Scholar 

  96. A. Geramifard, J. Redding, J.P. How, Intelligent cooperative control architecture: A framework for performance improvement using safe learning. J. Intell. Robot. Syst. 72(1), 83–103 (2013)

    Article  Google Scholar 

  97. E.M. Kan, M.H. Lim, Y.S. Ong, A.H. Tan, S.P. Yeo, Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput. & Applic. 22(3–4), 469–477 (2013)

    Article  Google Scholar 

  98. A. Loquercio, A.I. Maqueda, C.R. Del-Blanco, D. Scaramuzza, Dronet: Learning to fly by driving. IEEE Robot. Automat. Lett. 3(2), 1088–1095 (2018)

    Article  Google Scholar 

  99. S. Ross, N. Melik-Barkhudarov, K.S. Shankar, A. Wendel, D. Dey, J.A. Bagnell, and M. Hebert, Learning monocular reactive uav control in cluttered natural environments, in IEEE International Conference on Robotics and Automation (2013), pp. 1765–1772

    Google Scholar 

  100. M. Pérez-Ortiz, J.M. Peña, P.A. Gutiérrez, J. Torres-Sánchez, C. Hervás-Martínez, F. López-Granados, Selecting patterns and features for between-and within-crop-row weed mapping using UAV-imagery. Expert Syst. Appl. 47, 85–94 (2016)

    Article  Google Scholar 

  101. C. Luo, J. Nightingale, E. Asemota, and C. Grecos, A UAV-cloud system for disaster sensing applications, in IEEE 81st Vehicular Technology Conference (VTC Spring) (2015), pp. 1–5

    Google Scholar 

  102. S. Kang, K. Lee, Auto-scaling of geo-based image processing in an OpenStack cloud computing environment. Remote Sens. 8(8), 662 (2016)

    Article  Google Scholar 

  103. P. Sulaj, R. Haluška, L. Ovsenik, S. Marchevsky, and V. Kramar, Examples of real-time UAV data processing with cloud computing, in Conference of Open Innovation Association, FRUCT, No. 23 (2018), pp. 543–548

    Google Scholar 

  104. K. Liu, S. Chauhan, R. Devaraj, S. Shahi, and U. Sreekumar, Enabling autonomous unmanned aerial systems via edge computing, in IEEE International Conference on Service-Oriented System Engineering (SOSE) (2019), pp. 374–3745

    Google Scholar 

  105. A. Carrio, C. Sampedro, A. Rodriguez-Ramos, P. Campoy, A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 1–13 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Turjman, F., Zahmatkesh, H. (2020). A Comprehensive Review on the Use of AI in UAV Communications: Enabling Technologies, Applications, and Challenges. In: Al-Turjman, F. (eds) Unmanned Aerial Vehicles in Smart Cities. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-38712-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38712-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38711-2

  • Online ISBN: 978-3-030-38712-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics