Skip to main content

Circuit Analogies in the Search for New Metamaterials: Phenomenology of a Mechanical Diode

  • Chapter
  • First Online:
Nonlinear Wave Dynamics of Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 122))

Abstract

The pantographic metamaterial, a particular metamaterial, composed of two orthogonal families of fibers, with remarkable deformation properties, presents, in case the interconnections between the two layers of fibers are perfect hinges, a mechanical response that recalls by analogy the law characteristic of diodes, in the theory of electrical circuits. In this sense, the pantographic metamaterial represents a sort of mechanical diode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 89(4), 242–256 (2009)

    Google Scholar 

  3. Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)

    Article  MATH  Google Scholar 

  4. Altenbach, H., Eremeyev, V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204(3–4), 137 (2009b)

    Article  MATH  Google Scholar 

  5. Altenbach, H., Eremeyev, V.A.: Thin-walled structures made of foams. In: Cellular and Porous Materials in Structures and Processes. Springer, pp 167–242 (2010)

    Google Scholar 

  6. Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 95(10), 1004–1011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear euler-bernoulli beams. Continuum Mech. Thermodyn. 30(5), 1103–1123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balobanov, V., Niiranen, J.: Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput. Methods Appl. Mech. Eng. 339, 137–159 (2018)

    Article  MathSciNet  Google Scholar 

  10. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mech. Thermodyn. 1–13 (2018)

    Google Scholar 

  11. Beirão Da Veiga, L., Hughes, T., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A., Speleers, H.: A locking-free model for Reissner-Mindlin plates: analysis and isogeometric implementation via NURBS and triangular NURPS. Math. Models Methods Appl. Sci. 25(08), 1519–1551 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bilotta, A., Morassi, A., Rosset, E., Turco, E., Vessella, S.: Numerical size estimates of inclusions in Kirchhoff-Love elastic plates. Int. J. Solids Struct. 168, 58–72 (2019)

    Article  Google Scholar 

  13. Bouchitté, G., Mattei, O., Milton, G.W., Seppecher, P.: On the forces that cable webs under tension can support and how to design cable webs to channel stresses. Proc. R. Soc. A 475(2223), 20180781 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Camar-Eddine, M., Seppecher, P.: Non-local interactions resulting from the homogenization of a linear diffusive medium. C. R. de l’Académie des Sci. Ser. I-Math. 332(5), 485–490 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Camar-Eddine, M., Seppecher, P.: Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170(3), 211–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogeneous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Casal, P.: La capillarité interne. Cahier du groupe Français de rhéologie, CNRS VI 3, 31–37 (1961)

    Google Scholar 

  19. Casal, P.: Theory of second gradient and capillarity. C r hebd séances Acad. Sci. A 274(22), 1571 (1972)

    MathSciNet  MATH  Google Scholar 

  20. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1–2), 139–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 96(10), 1220–1244 (2016)

    Google Scholar 

  24. Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Continuum Mech. Thermodyn. 3, 1–28 (2018). https://doi.org/10.1007/s00161-018-0707-x

    Article  Google Scholar 

  25. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D”Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  30. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. In: Generalized Continua as Models for Classical and Advanced Materials. Springer, pp. 77–128 (2016)

    Google Scholar 

  31. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

    Article  Google Scholar 

  32. dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Corte, A.D., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F., Müller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)

    Article  MathSciNet  Google Scholar 

  33. dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., Eugster, S., Pfaff, A., Hoschke, K., Langkemper, R., Turco, E., Sarikaya, R., Misra, A., Angelo, M.F., D’Annibale, F., Bouterf, A., Pinelli, X., Misra, A., Desmorat, B., Pawlikowski, M., Dupuy, C., Scerrato, D., Peyre, P., Laudato, M., Manzari, L., Göransson, P., Hesch, C., Hesch, S., Franciosi, P., Dirrenberger, J., Maurin, F., Vangelatos, Z., Grigoropoulos, C.P., Melissinaki, V., Farsari, M., Muller, W., Abali, B.E., Liebold, C., Ganzosch, G., Harrison, P.G., Drobnicki, R., Igumnov, L.A., Alzahrani, F., Hayat, T.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31, 1231–1282 (2019)

    Article  Google Scholar 

  34. Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

    Article  Google Scholar 

  35. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eugster, S., Hesch, C., Betsch, P., Glocker, C.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Eugster, S., Steigmann, D., et al.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7(1), 75–98 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eugster, S.R., dell’Isola, F.: Exegesis of the introduction and sect. I from “Fundamentals of the mechanics of continua” ** by E. Hellinger. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4):477–506 (2017)

    Google Scholar 

  39. Eugster, S.R., dell’Isola, F.: Exegesis of sect. II and III. A from “Fundamentals of the mechanics of continua” by E. Hellinger. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(1):31–68 (2018)

    Google Scholar 

  40. Eugster, S.R., dell’Isola, F.: Exegesis of sect. III. B from “Fundamentals of the mechanics of continua” by E. Hellinger. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(1):69–105 (2018)

    Google Scholar 

  41. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4):95 (2016)

    Google Scholar 

  42. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 346, 913–951 (2019a)

    Article  Google Scholar 

  44. Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 356, 354–386 (2019b)

    Article  Google Scholar 

  45. Jia, H., Misra, A., Poorsolhjouy, P., Liu, C.: Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater. Des. 115, 422–432 (2017)

    Article  Google Scholar 

  46. Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: For materials and structures from nano-to macro-scales. Eur. J. Mech.A/Solids 71, 292–319 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vibr. 315(3), 375–393 (2008)

    Article  Google Scholar 

  48. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids 1081286515576821 (2015)

    Google Scholar 

  49. Misra, A., Poorsolhjouy, P.: Grain-and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

    Article  Google Scholar 

  50. Niiranen, J., Balobanov, V., Kiendl, J., Hosseini, S.: Variational formulations, model comparisons and numerical methods for euler-bernoulli micro-and nano-beam models. Math. Mech. Solids 24(1), 312–335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics. Springer, pp 193–210 (2017)

    Google Scholar 

  56. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  57. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech. Thermodyn. 1–21 (2018)

    Google Scholar 

  58. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 56 (2018c)

    Article  MathSciNet  MATH  Google Scholar 

  59. Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Scerrato, D., Zhurba Eremeeva, I., Lekszycki, T., Rizzi, N.: On the shear stiffness influence for modelling of deformations of pantographic sheets. In: Shell Structures: Theory and Applications Volume 4: Proceedings of the 11th International Conference Shell Structures: Theory and Applications (SSTA 2017), pp 161–164, 11–13 October 2017, Gdansk, Poland, CRC Press (2017)

    Google Scholar 

  62. Seppecher, P.: Moving contact lines in the Cahn-Hilliard theory. Int. J. Eng. Sci. 34(9), 977–992 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Article  Google Scholar 

  64. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  65. Steigmann, D., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Turco, E.: In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech. Res. Commun. 92, 61–66 (2018)

    Article  Google Scholar 

  67. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67 (2016)

    Google Scholar 

  68. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  69. Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)

    Article  Google Scholar 

  70. Turco, E., dell’Isola, F., Misra, A.: A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int. J. Numer. Anal. Methods Geomech. 43(5), 1051–1079 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. F. Hild and Dr. X. Pinelli (LMT, ENS Paris-Saclay/CNRS/Univ. Paris-Saclay) for their help in the experimental analyses conducted on pantographic structures. The author would also like to thank Prof. T. Lekszycki (Warsaw University of Technology) for providing him with the samples used in the experiment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spagnuolo, M. (2020). Circuit Analogies in the Search for New Metamaterials: Phenomenology of a Mechanical Diode. In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-38708-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38708-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38707-5

  • Online ISBN: 978-3-030-38708-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics