Skip to main content

Structural and Micropolar Beam Models of Nanocrystalline Materials (One-Dimensional Case)

  • Chapter
  • First Online:
Nonlinear Wave Dynamics of Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 122))

  • 329 Accesses

Abstract

In the present paper, linear atomic chain is studied. It is assumed that there is a non-central force and moment interaction between the atoms of the chain. The discrete model of the chain is constructed with the main equations and Hamilton principle. Further, the limit procedure to the continual (beam) model is performed. It is shown that the continual (beam) model of the linear chain of atoms is identical to the applied beam model, which is constructed based on the moment (micropolar) theory of elasticity. Elastic constants of the micropolar beam are determined through the elastic parameters of the discrete model of the linear chain of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blase, X.: Numerical simulation. In: Blase, X., Delerue, C. (eds.) Nanoscience. Nanotechnologies and Nanophysics. Springer, Berlin (2007)

    Google Scholar 

  2. Liu, W.K.: Computational nanomechanics of materials. In: Liu, W.K., Jun, S., Quian, D. (eds.) Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers (2005)

    Google Scholar 

  3. Yakobson, B.I., Brabeck, C.I., Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 75, 2511–2514 (1996)

    Article  Google Scholar 

  4. Ru, C.Q.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B. 62(15), 9973–9976 (2000)

    Article  Google Scholar 

  5. Ru, C.Q.: Elastic buckling of single-walled carbon nanotubes ropes under high pressure. Phys. Rev. B. 62(15), 10405–10408 (2000)

    Article  Google Scholar 

  6. Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48(8), 455–458 (2003)

    Article  Google Scholar 

  7. Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Derivation of macroscopic relations of the elasticity of complex crystal lattices taking into account the moment interactions at the microlevel. J. Appl. Math. Phys. 71(4), 543–561 (2007)

    MathSciNet  Google Scholar 

  8. Berinskii, I.E., Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Application of moment interaction to the construction of a stable model of graphite crystal lattice. Mech. Solids 42(5), 663–671 (2007)

    Article  Google Scholar 

  9. Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise K.E.: Equivalent-Continuum Modeling of Nano-Structured Materials. NASA Langley Research Center. Technical Memorandum NASA/TM-2001-210863 (2001)

    Google Scholar 

  10. Goldstein, R.V., Chentsov, A.V.: Discrete-continuous model of a nanotube. Mech. Solids 40(4), 45–59 (2005)

    Google Scholar 

  11. Li, C.A., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  Google Scholar 

  12. Berinskiy, I.E.: The Beam model of the crystal lattice of graphene. Sci. Tech. J. StPSPU. 104, 13–20 (2010). (in Russian)

    Google Scholar 

  13. Wan, H., Delale, F.: A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Mechanics 45, 43–51 (2010)

    MATH  Google Scholar 

  14. Scarp, F., Adhikari, S., Srikantha, Phari A.: Effective elastic mechanical properties of single layer grapheme sheets. Nanotechnology 20, 065709 (2009)

    Article  Google Scholar 

  15. Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Composites 36, 468–477 (2005)

    Article  Google Scholar 

  16. Sargsyan, S.H.: Applied one-dimensional beam theories based on the asymmetric theory of elasticity. Phys. Mesomech. 11(5), 41–54 (2008) (in Russian)

    Google Scholar 

  17. Sargsyan, S.H.: Thin beams based on asymmetric theory of elasticity. In: Proceedings “Problems of the Mechanics of a Deformable Solid”. Dedicated to 85th Anniversary of the Academician NAS Armenia S.H. Ambardzumyan. pp. 177–183. Publishing house of NAS Armenia, Yerevan (2007) (in Russian)

    Google Scholar 

  18. Zhilin, P.A.: Theoretical mechanics. Fundamental Laws Mechanics, vol. 340. Publishing house StPSPU, St. Petersburg (2003) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sargsyan, S.H. (2020). Structural and Micropolar Beam Models of Nanocrystalline Materials (One-Dimensional Case). In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-38708-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38708-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38707-5

  • Online ISBN: 978-3-030-38708-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics