Skip to main content

Influence of First to Second Gradient Coupling Tensors Terms with Surface Effects on the Wave Propagation of 2D Network Materials

  • Chapter
  • First Online:
Nonlinear Wave Dynamics of Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 122))

Abstract

The influence of surface energy terms on the wave propagation characteristics of network materials is analyzed in this contribution. The asymptotic homogenization technique is extended to account for additional surface properties of network materials made of the periodic repetition of a unit cell consisting of beam type elements. The presence of a thin coating with specific properties give rise to surface effects that are accounted for by a strain gradient behavior at the mesoscopic level of an equivalent continuum. These effects emerge in the asymptotic expansion of the effective stress and hyperstress tensors versus the small scale parameters and the additional small parameters related to surface effects. The role of the coupling tensors between first and second order gradient kinematic terms, obtained by the homogenization, materials is pursued in this contribution, accounting for surface effects arising from the presence of a thin coating on the surface of the structural beam elements of the network. The lattice beams have a viscoelastic behavior described by a Kelvin voigt model and the homogenized second gradient viscoelasticity model reflects both the lattice topology, anisotropy and microstructural features in terms of its geometrical and micromechanical parameters. We formulate the dynamic equilibrium equations and compute the network materials’ wave propagation attributes. We compute the influence of the coupling tensor terms on the wave propagation characteristics as a function of the propagation direction. Considerable differences between second gradient media description with and without the consideration of the coupling energy term contributions are observed for propagating modes along the non-centrosymmetric inner material direction. We assess the effect of coupling energy over a wide range of propagating directions, deriving useful overall conclusions on its role in the wave propagation features of 3D architectured media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Shi, Y., Zhang, Y., Zhu, J., Yan, Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    Article  Google Scholar 

  2. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004)

    Article  Google Scholar 

  3. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Wang, Y.D.L.J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)

    Article  Google Scholar 

  4. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8(7), 1798–1802 (2008)

    Article  Google Scholar 

  5. Liu, X., Luo, J., Zhu, J.: Size effect on the crystal structure of silver nanowires. Nano Lett. 6(3), 408–412 (2006)

    Article  Google Scholar 

  6. Laplace, P.S.: Sur l’action capillaire. Supplément à la théorie de l’action capillaire, In: Traité de mécanique céleste, vol. 4. Supplement 1, Livre X, 771–777. Gauthier–Villars et fils, Paris (1805)

    Google Scholar 

  7. Laplace, P.S.: À la théorie de l’action capillaire. Supplément à la théorie de l’action capillaire, In: Traité de mécanique céleste, vol. 4. Supplement 2, Livre X, 909–945. Gauthier–Villars et fils, Paris (1806)

    Google Scholar 

  8. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Google Scholar 

  9. Poisson, S.D.: Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris (1831)

    Google Scholar 

  10. Longley, W.R., Name, R.G.V. (eds.): The Collected Works of J. Willard Gibbs, PHD., LL.D. Vol. I Thermodynamics. Longmans, New York (1928)

    Google Scholar 

  11. de Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Pearls, Bubbles, Waves. Springer, New York (2004)

    Book  Google Scholar 

  12. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Dover, New York (2003)

    Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper a continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59(4), 389–390 (1975)

    Article  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  15. Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462(2069), 1355–1363 (2006)

    Article  Google Scholar 

  16. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)

    Article  MathSciNet  Google Scholar 

  17. Steigmann, D.J., Ogden, R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)

    Article  MathSciNet  Google Scholar 

  18. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale, a unifying review. Appl. Mech. Rev. 65(1), 010802–1–31 (2012)

    Google Scholar 

  19. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    Article  MathSciNet  Google Scholar 

  20. Podio-Guidugli, P., Caffarelli, G.V.: Surface interaction potentials in elasticity. Arch. Ration. Mech. Anal. 109, 345–385 (1990)

    Article  MathSciNet  Google Scholar 

  21. Povstenko, Y.: Mathematical modeling of phenomena caused by surface stresses in solids. In: Altenbach, H., Morozov, N.F. (eds.) Surface Effects in Solid Mechanics, 30, pp. 135–153. Springer, Berlin (2013)

    Chapter  Google Scholar 

  22. Silhavý, M.: A direct approach to nonlinear shells with application to surface–substrate interactions. Math. Mech. Complex Syst. 1(2), 211–232 (2013)

    Article  Google Scholar 

  23. Lurie, S.A., Kalamkarov, A.L.: General theory of continuous media with conserved dislocations, Int. J. Solids Struct. 44(22–23), 7468–7485 (2007)

    Google Scholar 

  24. Lurie, S.A., Belov, P.A.: Cohesion field: Barenblatt’s hypothesis as formal corollary of theory of continuous media with conserved dislocations. Int. J. Fract. 150(1–2), 181–194 (2008)

    Article  Google Scholar 

  25. Lurie, S., Volkov-Bogorodsky, D., Zubov, V., Tuchkova, N.: Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites. Comput. Mater. Sci. 45(3), 709–714 (2009)

    Article  Google Scholar 

  26. Lurie, S., Belov, P.: Gradient effects in fracture mechanics for nano-structured materials. Eng. Fract. Mech. 130, 3–11 (2014)

    Article  Google Scholar 

  27. Rubin, M., Benveniste, Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52(5), 1023–1052 (2004)

    Article  MathSciNet  Google Scholar 

  28. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    Article  MathSciNet  Google Scholar 

  29. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54(11), 2983–2990 (2006)

    Article  Google Scholar 

  30. Duan, H.L., Karihaloo, B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55(5), 1036–1052 (2007)

    Article  MathSciNet  Google Scholar 

  31. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009)

    Article  Google Scholar 

  32. Kushch, V.I., Chernobai, V.S., Mishuris, G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Engng. Sci. 84, 79–94 (2014)

    Article  Google Scholar 

  33. Kushch, V.I., Sevostianov, I., Chernobai, V.S.: Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int. J. Eng. Sci. 83, 146–161 (2014)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

    Article  Google Scholar 

  35. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  36. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  Google Scholar 

  37. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Mechanical properties of materials considering surface effects. In: Cocks, A., Wang, J. (eds.) IU TAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, IUTAM Bookseries (closed), 31, pp. 105–115. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  38. Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosized plates. Doklady Phys. 54(2), 98–100 (2009)

    Article  Google Scholar 

  39. Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys., 98(7), 074306 (2005)

    Google Scholar 

  40. Heinonen, S., Huttunen-Saarivirta, E., Nikkanen, J.P., Raulio, M., Priha, O., Laakso, J., Storgårds, E., Levänen, E.: Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol–gel route. Colloids Surf. A Physicochem. Eng. Aspects 453, 149–161 (2014)

    Article  Google Scholar 

  41. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48(2), 140–150 (2010)

    Article  Google Scholar 

  42. Rahali, Y., Dos Reis, F., Ganghoffer, J.F.: Multiscale homogenization schemes for the construction of second order grade anisotropic continuum media of architectured materials. J. Multiscale Comput. Eng. 15(1), 35–78 (2017)

    Article  Google Scholar 

  43. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Engng Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  44. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Analysis of dispersive waves in repetitive lattices based on homogenized second—gradient continuum models. Compos. Struct. 152, 712–728 (2016)

    Article  Google Scholar 

  45. Rahali, Y., Eremeyev V., Ganghoffer, J.F.: Surface effects of network materials based on strain gradient homogenized media. In: Mathematics and Mechanics of Solids. (in press) (2019)

    Google Scholar 

  46. Eremeyev, V.: On effective properties of materials at the nanoand microscales considering surface effects. Acta Mech. 227(1), 29–42 (2015)

    Article  Google Scholar 

  47. Forest, S.: Milieux Continus Généralisés et Matériaux Hétérogènes, Presses de l’École des Mines (2006)

    Google Scholar 

  48. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ganghoffer .

Editor information

Editors and Affiliations

Appendix: Transition from Curvilinear to Cartesian Coordinates

Appendix: Transition from Curvilinear to Cartesian Coordinates

After development of Eq. (19.14) in Cartesian coordinates, one obtains

$$ \mathop {\text{lim}}\limits_{\varepsilon \to 0} P = \int\limits_{\Omega } {\left[ {\frac{1}{g}\sum\limits_{b} {\left[ {\begin{array}{*{20}l} {} \hfill \\ {\left( {\begin{array}{*{20}l} {T_{E}^{1} \left( {L_{1} \delta_{1b} \left( {c_{{\theta_{1} }} \frac{{\partial \dot{V}_{o} }}{\partial x} + s_{{\theta_{1} }} \frac{{\partial \dot{V}_{o} }}{\partial y}} \right) + L_{2} \delta_{2b} \left( {c_{{\theta_{2} }} \frac{{\partial \dot{V}_{o} }}{\partial x} + s_{{\theta_{2} }} \frac{{\partial \dot{V}_{o} }}{\partial y}} \right)} \right)} \hfill \\ { + N_{E}^{1} \left( {L_{1} \delta_{1b} \left( {c_{{\theta_{1} }} \frac{{\partial \dot{U}_{o} }}{\partial x} + s_{{\theta_{1} }} \frac{{\partial \dot{U}_{o} }}{\partial y}} \right) + L_{2} \delta_{2b} \left( {c_{{\theta_{2} }} \frac{{\partial \dot{U}_{o} }}{\partial x} + s_{{\theta_{2} }} \frac{{\partial \dot{U}_{o} }}{\partial y}} \right)} \right)} \hfill \\ \end{array} } \right)} \hfill \\ { + \varepsilon \left( {\begin{array}{*{20}l} {T_{E}^{1} \left( \begin{aligned} \frac{{L_{1}^{2} \delta_{1b}^{2} }}{2}\left( {c_{{\theta_{1} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{1} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{1} }} c_{{\theta_{1} }} \frac{{\partial^{2} \dot{V}_{o} }}{\partial x\partial y}} \right) \hfill \\ + \frac{{L_{2}^{2} \delta_{2b}^{2} }}{2}\left( {c_{{\theta_{2} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{2} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{2} }} c_{{\theta_{2} }} \frac{{\partial^{2} \dot{V}_{o} }}{\partial x\partial y}} \right) \hfill \\ \end{aligned} \right)} \hfill \\ { + T_{E}^{2} \left( {L_{1} \delta_{1b} \left( {c_{{\theta_{1} }} \frac{{\partial \dot{V}_{o} }}{\partial x} + s_{{\theta_{1} }} \frac{{\partial \dot{V}_{o} }}{\partial y}} \right) + L_{2} \delta_{2b} \left( {c_{{\theta_{2} }} \frac{{\partial \dot{V}_{o} }}{\partial x} + s_{{\theta_{2} }} \frac{{\partial \dot{V}_{o} }}{\partial y}} \right)} \right)} \hfill \\ { + N_{E}^{1} \left( \begin{aligned} \frac{{L_{1}^{2} \delta_{1b}^{2} }}{2}\left( {c_{{\theta_{1} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{1} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{1} }} c_{{\theta_{1} }} \frac{{\partial^{2} \dot{U}_{o} }}{\partial x\partial y}} \right) \hfill \\ + \frac{{L_{2}^{2} \delta_{2b}^{2} }}{2}\left( {c_{{\theta_{2} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{2} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{2} }} c_{{\theta_{2} }} \frac{{\partial^{2} \dot{U}_{o} }}{\partial x\partial y}} \right) \hfill \\ \end{aligned} \right)} \hfill \\ { + N_{E}^{2} \left( {L_{1} \delta_{1b} \left( {c_{{\theta_{1} }} \frac{{\partial \dot{U}_{o} }}{\partial x} + s_{{\theta_{1} }} \frac{{\partial \dot{U}_{o} }}{\partial y}} \right) + L_{2} \delta_{2b} \left( {c_{{\theta_{2} }} \frac{{\partial \dot{U}_{o} }}{\partial x} + s_{{\theta_{2} }} \frac{{\partial \dot{U}_{o} }}{\partial y}} \right)} \right)} \hfill \\ \end{array} } \right)} \hfill \\ { + \varepsilon^{2} \left( {\begin{array}{*{20}l} {T_{E}^{2} \left( \begin{aligned} \frac{{L_{1}^{2} \delta_{1b}^{2} }}{2}\left( {c_{{\theta_{1} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{1} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{1} }} c_{{\theta_{1} }} \frac{{\partial^{2} \dot{V}_{o} }}{\partial x\partial y}} \right) \hfill \\ + \frac{{L_{2}^{2} \delta_{2b}^{2} }}{2}\left( {c_{{\theta_{2} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{2} }}^{2} \frac{{\partial^{2} \dot{V}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{2} }} c_{{\theta_{2} }} \frac{{\partial^{2} \dot{V}_{o} }}{\partial x\partial y}} \right) \hfill \\ \end{aligned} \right)} \hfill \\ { + N_{E}^{2} \left( \begin{aligned} \frac{{L_{1}^{2} \delta_{1b}^{2} }}{2}\left( {c_{{\theta_{1} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{1} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{1} }} c_{{\theta_{1} }} \frac{{\partial^{2} \dot{U}_{o} }}{\partial x\partial y}} \right) \hfill \\ + \frac{{L_{2}^{2} \delta_{2b}^{2} }}{2}\left( {c_{{\theta_{2} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial x^{2} }} + s_{{\uptheta_{2} }}^{2} \frac{{\partial^{2} \dot{U}_{o} }}{{\partial y^{2} }} + 2s_{{\theta_{2} }} c_{{\theta_{2} }} \frac{{\partial^{2} \dot{U}_{o} }}{\partial x\partial y}} \right) \hfill \\ \end{aligned} \right)} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right]} } \right]} dV $$
(A.1)

\( c_{\theta } ,s_{\theta } ,c_{\theta }^{2} \) and \( s_{\theta }^{2} \) stand for \( { \cos }\theta ,{ \sin }\theta , {\text{cos}}^{2} \theta \) and \( { \sin }^{2} \theta \), they are the components of the periodicity vectors [43].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahali, Y., Reda, H., Vieille, B., Lakiss, H., Ganghoffer, JF. (2020). Influence of First to Second Gradient Coupling Tensors Terms with Surface Effects on the Wave Propagation of 2D Network Materials. In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-38708-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38708-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38707-5

  • Online ISBN: 978-3-030-38708-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics