Skip to main content

Generalized Space–Time Fractional Dynamics in Networks and Lattices

  • Chapter
  • First Online:
  • 328 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 122))

Abstract

We analyze generalized space–time fractional motions on undirected networks and lattices. The continuous-time random walk (CTRW) approach of Montroll and Weiss is employed to subordinate a space fractional walk to a generalization of the time fractional Poisson renewal process. This process introduces a non-Markovian walk with long-time memory effects and fat-tailed characteristics in the waiting time density. We analyze ‘generalized space–time fractional diffusion’ in the infinite d-dimensional integer lattice \( \mathbb {Z}^d\). We obtain in the diffusion limit a ‘macroscopic’ space–time fractional diffusion equation. Classical CTRW models such as with Laskin’s fractional Poisson process and standard Poisson process which occur as special cases are also analyzed. The developed generalized space–time fractional CTRW model contains a four-dimensional parameter space and offers therefore a great flexibility to describe real-world situations in complex systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the context of random walks where the events indicate random jumps, we also utilize the notion ‘jump density’ [17].

  2. 2.

    We denote \( {\tilde{f}}(s) = \mathcal{L}\{f(t)\}\) the Laplace transform of f(t), and by \( \mathcal{L}^{-1}\{\ldots \}\) Laplace inversion, see Appendix for further details.

  3. 3.

    We often skip \( \varTheta (t)\) when there is no time derivative involved.

  4. 4.

    In this relation in the sense of generalized functions, we can include the value \( \mu =0\) as the limit \( \lim _{\mu \rightarrow 0+} \frac{t^{\mu -1}}{\varGamma (\mu )} =\delta (t)\) [23].

  5. 5.

    Note that \( -\varGamma (-\beta )=\beta ^{-1}\varGamma (1-\beta ) >0\).

  6. 6.

    See Ref. [20] for a discussion of this issue for the fractional Poisson process.

  7. 7.

    For further details on renewal theory, see, e.g., [35].

  8. 8.

    This picture corresponds to the introduction of a lattice constant \( h \rightarrow 0\).

  9. 9.

    For explicit representations and evaluations, see, e.g., [8].

  10. 10.

    See also Laplace transform (14.73) for \( \beta =1\) and Appendix.

  11. 11.

    Where we take into account with \( \delta (t)=\frac{d}{dt}\varTheta (t)\) that \( \frac{d}{dt}\left( \varTheta (t)f(t)\right) = \delta (t)f(0)+ \varTheta (t)\frac{d}{dt}f(t)\), and further properties are outlined in the Appendix.

References

  1. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MathSciNet  Google Scholar 

  2. Shlesinger, M.: Origins and applications of the Montroll-Weiss continuous time random walk. Eur. Phys. J. B 90, 93 (2017)

    Article  MathSciNet  Google Scholar 

  3. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MathSciNet  Google Scholar 

  4. Gorenflo, R., Abdel Rehim, E.A.A.: From power laws to fractional diffusion: the direct way. Vietnam J. Math. 32(SI), 65–75 (2004)

    Google Scholar 

  5. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  6. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004)

    Article  MathSciNet  Google Scholar 

  7. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61(1) (2000)

    Google Scholar 

  8. Michelitsch, T., Riascos, A.P., Collet, B.A., Nowakowski, A., Nicolleau, F.: Fractional Dynamics on Networks and Lattices. Wiley, United States (2019)

    Book  Google Scholar 

  9. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Phys. Rep. 716–717, 1–58 (2017)

    Article  MathSciNet  Google Scholar 

  10. Riascos, A.P., Wang-Michelitsch, J., Michelitsch, T.M.: Aging in transport processes on networks with stochastic cumulative damage. Phys. Rev. E 100, 022312 (2019)

    Article  Google Scholar 

  11. Polya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 83, 149–160 (1921)

    Article  MathSciNet  Google Scholar 

  12. Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11) (2004)

    Google Scholar 

  13. Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000)

    Article  MathSciNet  Google Scholar 

  14. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8(3–4), 201–213 (2003)

    Article  MathSciNet  Google Scholar 

  15. Laskin, N.: Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50, 113513 (2009)

    Article  MathSciNet  Google Scholar 

  16. Cahoy, D.O., Polito, F.: Renewal processes based on generalized Mittag-Leffler waiting times. Commun. Nonlinear Sci. Numer. Simul. 18(3), 639–650 (2013)

    Article  MathSciNet  Google Scholar 

  17. Michelitsch, T., Riascos, A.P.: Continuous time random walk and diffusion with generalized fractional Poisson process. Physica A (in press). https://doi.org/10.1016/j.physa.2019.123294. Preprint: arXiv:1907.03830v2 [cond-mat.stat-mech]

  18. Michelitsch, T.M., Riascos, A.P.: Generalized fractional Poisson process and related stochastic dynamics (submitted for publication). Preprint: arXiv:1906.09704 [cond-mat.stat-mech]

  19. Montroll, E.W., Weiss, G.H.: Random walks on lattices II. J. Math. Phys. 6(2), 167–181 (1965)

    Google Scholar 

  20. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004). MR2120631

    Google Scholar 

  21. Scher, H., Lax, M.: Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7, 4491 (1973)

    Google Scholar 

  22. Kutner, R., Masoliver, J.: The continuous time random walk, still trendy: fifty-year history, state of art and outlook. Eur. Phys. J. B 90, 50 (2017)

    Article  Google Scholar 

  23. Gelfand, I.M., Shilov, G.E.: Generalized Functions, vols. I–III. Academic Press, New York (1968) (reprinted by the AMS, 2016)

    Google Scholar 

  24. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley, New York (1968)

    Google Scholar 

  25. Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14(61), 1790–1826 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hilfer, R., Anton, L.: Fractional master equation and fractal time random walks. Phys. Rev. E 51, R848–R851 (1995)

    Article  Google Scholar 

  27. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  28. Mathai, A.M.: Some properties of Mittag-Leffler functions and matrix variant analogues: a statistical perspective. Fract. Calc. Appl. Anal. 13(2) (2010)

    Google Scholar 

  29. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)

    Article  MathSciNet  Google Scholar 

  30. Haubold, H.J., Mathhai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011(298628), 51 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Gara, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)

    Article  MathSciNet  Google Scholar 

  32. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Gorenflo, R., Mainardi, F.: The asymptotic universality of the Mittag-Leffler waiting time law in continuous time random walks. In: Invited Lecture at the 373. WE-Heraeus-Seminar on Anomalous Transport: Experimental Results and Theoretical Challenges, Physikzentrum Bad-Honnef (Germany), 12–16 July 2006

    Google Scholar 

  34. Riascos, A.P., Michelitsch, T.M., Collet, B.A., Nowakowski, A.F., Nicolleau, F.C.G.A.: Random walks with long-range steps generated by functions of Laplacian matrices. J. Stat. Mech. Stat. Mech. 2018, 043404 (2018)

    Google Scholar 

  35. Cox, D.R.: Renewal Theory, 2nd edn. Methuen, London (1967)

    MATH  Google Scholar 

  36. Riascos, A.P., Mateos, J.L.: Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights. Phys. Rev. E 90, 032809 (2014)

    Article  Google Scholar 

  37. Riascos, A.P., Mateos, J.L.: Fractional diffusion on circulant networks: emergence of a dynamical small world. J. Stat. Mech. 2015, P07015 (2015)

    Article  MathSciNet  Google Scholar 

  38. Michelitsch, T.M., Collet, B.A., Riascos, A.P., Nowakowski, A.F., Nicolleau, F.C.G.A.: On recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices. J. Phys. A: Math. Theor. 50, 505004 (2017)

    Google Scholar 

  39. Michelitsch, T., Collet, B., Riascos, A.P., Nowakowski, A., Nicolleau, F.: On recurrence and transience of fractional random walks in lattices. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials, vol. 1, pp. 555–580. Springer, Cham (2018)

    Google Scholar 

  40. Michelitsch, T.M., Collet, B.A., Nowakowski, A.F., Nicolleau, F.C.G.A.: Fractional Laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit. J. Phys. A: Math. Theor. 48, 295202 (2015)

    Article  MathSciNet  Google Scholar 

  41. Gorenflo, R.: Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit. arXiv:1004.4413 [math.PR] (2010)

  42. Riascos, A.P., Mateos, J.L.: Long-range navigation on complex networks using Lévy random walks. Phys. Rev. E 86, 056110 (2012)

    Article  Google Scholar 

  43. Michelitsch, T.M., Collet, B.A., Riascos, A.P., Nowakowski, A.F., Nicolleau, F.C.G.A.: Fractional random walk lattice dynamics. Phys. A: Math. Theor. 50, 055003 (2017)

    Article  MathSciNet  Google Scholar 

  44. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014)

    Book  Google Scholar 

  45. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  46. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  47. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Michelitsch .

Editor information

Editors and Affiliations

Appendix: Laplace Transforms and Fractional Operators

Appendix: Laplace Transforms and Fractional Operators

Here, we derive briefly some basic mathematical apparatus used in the paper in the context of causal functions and distributions involving fractional operators and Heaviside calculus. All functions and distributions considered are to be conceived as generalized functions and distributions in the Gelfand–Shilov sense [23]. Let us first introduce the Heaviside step function

$$\begin{aligned} \varTheta (t) = \left\{ \begin{array}{l} 1 ,\qquad t \ge 0 \\ 0 ,\qquad t < 0. \end{array}\right. \end{aligned}$$
(14.80)

A function is causal if it has the form \( \varTheta (t) f(t)\), i.e., is null for \( t<0\) and nonvanishing only for nonnegative times t. We introduce the Laplace transform of \( \varTheta (t) f(t)\) by

$$\begin{aligned} {\tilde{f}}(s) = \mathcal{L}(f(t)) = \int _{-\infty }^{\infty } e^{-st} \varTheta (t)f(t)\mathrm{d}t = \int _{0}^{\infty }f(t)e^{-st}\mathrm{d}t ,\quad s=\sigma +i\omega \end{aligned}$$
(14.81)

with suitably chosen \( \sigma >\sigma _0\) in order to guarantee convergence of (14.81). In view of the fact that (14.81) can be read as Fourier transform of the causal function \(e^{-\sigma t}f(t)\varTheta (t)\), it is straightforward to see that the Laplace inversion corresponds to the representation of this function as Fourier integral, namely

$$\begin{aligned} e^{-\sigma t}f(t)\varTheta (t) = \frac{1}{2\pi } \int _{-\infty }^{\infty } e^{i\omega t} {\tilde{f}}(\sigma +i\omega )\mathrm{d}\omega \end{aligned}$$
(14.82)

which can be rewritten as

$$\begin{aligned} f(t)\varTheta (t) = \frac{ e^{\sigma t} }{2\pi } \int _{-\infty }^{\infty } e^{i\omega t} {\tilde{f}}(\sigma +i\omega )\mathrm{d}\omega = \frac{1}{2\pi i} \int _{-i\infty }^{+i\infty } e^{st} {\tilde{f}}(s)\mathrm{d}s . \end{aligned}$$
(14.83)

Sometimes when there is no time derivative involved, we skip the Heaviside \( \varTheta (t)\)-function implying that all expressions are written for \(t\ge 0\). Then, we mention that

$$\begin{aligned} \varTheta (t)f(t) = \int _{-\infty }^{\infty } \delta (t-\tau )\varTheta (\tau )f(\tau )\mathrm{d}\tau \end{aligned}$$
(14.84)

and introduce the shift operator \( e^{-\tau \frac{d}{dt}}\) acting on a function g(t) as \( e^{-\tau \frac{d}{dt}}g(t)=g(t-\tau )\) thus

$$\begin{aligned} e^{-\tau \frac{d}{dt}} \delta (t) = \delta (t-\tau ) . \end{aligned}$$
(14.85)

Substituting this relation into (14.84) yields

$$\begin{aligned} \varTheta (t)f(t) = \left\{ \int _{-\infty }^{\infty } e^{-\tau \frac{d}{dt}} \varTheta (\tau )f(\tau )\mathrm{d}\tau \right\} \,\, \delta (t) =\mathcal{L}^{-1}\{ {\tilde{f}}(s) \} = {\tilde{f}}\left( \frac{d}{dt}\right) \,\, \delta (t) \end{aligned}$$
(14.86)

where the operator \( {\tilde{f}}(\frac{d}{dt})\) is related with the Laplace transform (14.81) by replacing \( s \rightarrow \frac{d}{dt}\). Equation (14.86) is the operator representation of the causal function \(\varTheta (t)f(t)\). A convolution of two causal functions \( \varTheta (t)f(t), g(t)\varTheta (t)\) then can be represented by

$$\begin{aligned} \begin{array}{l} \displaystyle \int _{0}^t g(t-\tau )f(\tau )\mathrm{d}\tau \\ = \int _{-\infty }^{\infty } \int _{-\infty }^{\infty } \delta (t-\tau _1-\tau _2) g(\tau _1)\varTheta (\tau _1)f(\tau _2)\varTheta (\tau _2) \mathrm{d}\tau _1\mathrm{d}\tau _2 ,\quad t>0 \\[1em] \displaystyle \left( \int _{-\infty }^{\infty } e^{-\tau _1\frac{d}{dt}} \varTheta (\tau _1)f(\tau )\mathrm{d}\tau _1\right) \left( \int _{-\infty }^{\infty } e^{-\tau _2\frac{d}{dt}} \varTheta (\tau _2)f(\tau )\mathrm{d}\tau _2\right) \delta (t) \\[1em] \displaystyle =\mathcal{L}^{-1}\{{\tilde{g}}(s){\tilde{f}}(s)\} = {\tilde{f}}\left( \frac{d}{dt}\right) {\tilde{g}}\left( \frac{d}{dt}\right) \,\, \delta (t) = {\tilde{g}}\left( \frac{d}{dt}\right) {\tilde{f}}\left( \frac{d}{dt}\right) \,\ \delta (t) \end{array} \end{aligned}$$
(14.87)

where it has been used \( \delta (t-\tau _1-\tau _2) = e^{-(\tau _1+\tau _2)\frac{d}{dt}}\delta (t)\). We observe that in (14.86) and (14.87), the Laplace variable is replaced \( s \rightarrow \frac{d}{dt}\) in the causal time domain. By considering \( {\bar{f}}(t)\varTheta (t)= f(t)\varTheta (t) e^{-\lambda t}\), we observe that

$$\begin{aligned} f(t)\varTheta (t) e^{-\lambda t} = \left\{ \int _{-\infty }^{\infty } e^{-\tau (\lambda +\frac{d}{dt})} f(\tau )\varTheta (\tau ) \mathrm{d}\tau \right\} \delta (t) = {\tilde{f}}\left( \lambda +\frac{d}{dt}\right) \delta (t) \end{aligned}$$
(14.88)

where \( {\tilde{f}}(s)= \mathcal{L}\{f(t)\}\). We are especially dealing with normalized (probability) distributions

$$\begin{aligned} {\tilde{f}}(s=0)= 1 = \int _{-\infty }^{\infty }\varTheta (t) f(t)\mathrm{d}t. \end{aligned}$$
(14.89)

A very important consequence of relations (14.86) and (14.87) is that they can be used to solve differential equations and to determine causal Green’s functions. As a simple example, consider the trivial algebraic equation in the Laplace domain

$$\begin{aligned} (s+\xi ) \,\, \frac{\xi }{(s+\xi )} = \xi , \qquad \xi >0 \end{aligned}$$
(14.90)

takes with \( \mathcal{L}^{-1}\left\{ s+\xi \right\} = \frac{d}{dt}+\xi \) and \( \mathcal{L}^{-1}\left\{ \frac{\xi }{s+\xi }\right\} = \varTheta (t) \xi e^{-\xi t}\) where on the right-hand side is used that \( \mathcal{L}^{-1}\{1\} = \delta (t) \). In the causal time domain (14.90) then gives the representation

$$\begin{aligned} \left( \frac{d}{dt}+\xi \right) \, \left( \xi \varTheta (t) e^{-\xi t} \right) = \xi \delta (t) , \end{aligned}$$
(14.91)

result which is straightforwardly confirmed, i.e., the normalized causal Green’s function of \( \frac{d}{dt}+\xi \) is directly obtained as \( (\frac{d}{dt}+\xi )^{-1} \xi \delta (t) = \varTheta (t) \xi e^{-\xi t}\) where it is important that the \( \varTheta (t)\)-function is taken into account in the Laplace inversion.

A less trivial example is obtained when considering fractional powers of operators. For instance, let us consider in the Laplace domain the equation

$$\begin{aligned} (s^{\beta }+\xi ) \, \frac{\xi }{(s^{\beta }+\xi )} = \xi , \qquad \xi >0, \qquad 0< \beta \le 1 \end{aligned}$$
(14.92)

which writes in the time domain

$$\begin{aligned} \left\{ \left( \frac{d}{dt}\right) ^{\beta }+\xi \right\} \, \varTheta (t) g_{\beta ,\xi }(t) = \xi \delta (t) \end{aligned}$$
(14.93)

where the fractional derivative \(\left( \frac{d}{dt}\right) ^{\beta }\) is determined subsequently. The causal Green’s function \( \varTheta (t) g_{\beta ,\xi }(t)\) is obtained from the Laplace inversion

$$\begin{aligned} g_{\beta ,\xi }(t)=\mathcal{L}^{-1}\left\{ \frac{\xi }{s^{\beta }+\xi }\right\} . \end{aligned}$$
(14.94)

The inversion is performed directly when taking into account

$$\begin{aligned} \frac{\xi }{(s^{\beta }+\xi )} = s^{-\beta } \frac{\xi }{(1+\xi s^{-\beta })} = \xi \sum _{n=0}^{\infty } (-1)^n \xi ^n s^{-\beta (n+1) }, \quad \sigma =\mathfrak {R}\{s\} > \xi ^{\frac{1}{\beta }} \end{aligned}$$
(14.95)

where \( \sigma =\mathfrak {R}\{s\} > \xi ^{\frac{1}{\beta }}\) guarantees convergence of this geometric series \( \forall \omega = \mathfrak {I}\{s\}\), i.e., for the entire interval of integration of the corresponding Laplace inversion integral (14.88). On the other hand, we have

$$\begin{aligned} s^{-\mu } = \mathcal{L}\left\{ \varTheta (t)\frac{t^{\mu -1}}{\varGamma (\mu )} \right\} ,\qquad \mu>0 , \qquad \sigma > 0 , \end{aligned}$$
(14.96)

where we use the notation \( \varGamma (\xi +1)= \xi ! \) for the gamma function. We then arrive at

$$\begin{aligned} \begin{array}{lll} \displaystyle \varTheta (t) g_{\beta ,\xi }(t)&{}=&{}\displaystyle \mathcal{L}^{-1}\left\{ \frac{\xi }{\xi +s^{\beta }}\right\} \\ \displaystyle \quad &{}=&{} \displaystyle \sum _{n=0}^{\infty } (-1)^n \xi ^{n+1} \mathcal{L} ^{-1}\left\{ s^{-\beta (n+1) }\right\} = \varTheta (t) \sum _{n=0}^{\infty } (-1)^n \xi ^{n+1} \frac{t^{n\beta +\beta -1}}{\varGamma (n\beta +\beta )} \end{array} \end{aligned}$$
(14.97)

with

$$\begin{aligned} g_{\beta ,\xi }(t) = \xi t^{\beta -1} \sum _{n=0}^{\infty }\frac{(-\xi t^{\beta })^n}{\varGamma (n\beta +\beta )} = \xi t^{\beta -1} E_{\beta ,\beta }(-\xi t^{\beta }) . \end{aligned}$$
(14.98)

Here, we have introduced the generalized Mittag-Leffler function, e.g., [4, 30, 44]

$$\begin{aligned} E_{\beta ,\gamma }(z) = \sum _{n=0}^{\infty } \frac{z^n}{\varGamma (\beta n+\gamma )} ,\qquad \beta , \gamma >0 ,\quad z \in \mathbb {C} \end{aligned}$$
(14.99)

It follows that \( \xi \) is a dimensional constant having units \( \sec ^{-\beta }\) so that (14.98) has physical dimension of \( \sec ^{-1}\) of a density. The result (14.98) also is referred to as Mittag-Leffler density and represents the waiting time density of Eq. (14.26) of the fractional Poisson renewal process introduced by Laskin [14]. Generally, Mittag-Leffler type functions play a major role in time fractional dynamics. We further often use the Mittag-Leffler function which is defined as, e.g., [4, 30, 44]

$$\begin{aligned} E_{\beta }(z) = \sum _{n=0}^{\infty } \frac{z^n}{\varGamma (\beta n+1)} ,\qquad \beta >0 ,\quad z \in \mathbb {C} \end{aligned}$$
(14.100)

where with (14.99) we have \( E_{\beta }(z)=E_{\beta ,1}(z)\). The Mittag-Leffler function has the important property that for \( \beta =1\) it recovers the exponential \( E_{1}(z)= e^{z}\).

Riemann–Liouville fractional integral and derivative

Now let us derive the kernel of the fractional power of time-derivative operator of Eq. (14.93) where we consider now exponents \( \gamma >0\). This kernel is then obtained with above-introduced methods in the following short way

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal{L}^{-1}\{s^{\gamma }\}= \mathcal{L}^{-1} \{s^{{\lceil }\gamma {\rceil }} s^{\gamma -{\lceil }\gamma {\rceil }}\} = e^{\sigma t}\left( \sigma +\frac{d}{dt}\right) ^{{\lceil }\gamma {\rceil }}\left( \sigma +\frac{d}{dt}\right) ^{\gamma -{\lceil }\gamma {\rceil }} \delta (t)\\ \displaystyle \quad = e^{\sigma t}\left( \sigma +\frac{d}{dt}\right) ^{{\lceil }\gamma {\rceil }} \int _{-\infty }^{\infty }\frac{\mathrm{d}\omega }{(2\pi )}e^{i\omega t} (\sigma +i\omega )^{\gamma -{\lceil }\gamma {\rceil }} \\ \displaystyle \quad = e^{\sigma t}\left( \sigma +\frac{d}{dt}\right) ^{{\lceil }\gamma {\rceil }} \left\{ e^{-\sigma t}\varTheta (t) \frac{t^{{\lceil }\gamma {\rceil }-\gamma -1}}{({\lceil }\gamma {\rceil }-\gamma -1)!}\right\} = \frac{d^{{\lceil }\gamma {\rceil }}}{dt^{{\lceil }\gamma {\rceil }}} \left( \varTheta (t) \frac{t^{{\lceil }\gamma {\rceil }-\gamma -1}}{\varGamma ({\lceil }\gamma {\rceil }-\gamma )} \right) . \end{array} \end{aligned}$$
(14.101)

with \(\gamma >0 , \gamma \notin \mathbb {N}\). Here, we introduced the ceiling function \( {\lceil }\gamma {\rceil }\) indicating the smallest integer greater or equal to \( \gamma \). In this way, the Fourier integral in the second line is integrable around \( \omega =0\) \( \forall \sigma \ge 0\) since \( \gamma -{\lceil }\gamma {\rceil } >-1 \). We then obtain for the Laplace inversion

$$\begin{aligned} \mathcal{L}^{-1}\{s^{-\gamma }\}= \varTheta (t) \frac{t^{\gamma -1}}{\varGamma (\gamma )} ,\qquad \gamma >0 \end{aligned}$$
(14.102)

as a fractional generalization of integration operator. This kernel indeed can be identified with the kernel of the Riemann–Liouville fractional integral operator of order \( \gamma \) [45,46,47] which recovers for \(\gamma \in \mathbb {N}\) the multiple integer-order integrations.

On the other hand, the kernel (14.101) with explicit representation in (14.101)\(_3\) can be conceived as the ‘fractional derivative’ operator \( (\frac{d}{dt})^{\gamma }\). The fractional derivative acts on causal functions \( \varTheta (t)f(t)\) as

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal{L}^{-1}\{s^{\gamma }\} \cdot f(t)\varTheta (t) =: _0\!D_t^{\gamma } f(t) = \frac{d^{{\lceil }\gamma {\rceil }}}{dt^{{\lceil }\gamma {\rceil }}}\int _{-\infty }^{\infty } \left\{ \varTheta (t-\tau ) \frac{(t-\tau )^{{\lceil }\gamma {\rceil }-\gamma -1}}{{\varGamma ({\lceil }\gamma {\rceil }-\gamma )}} \right\} f(\tau )\varTheta (t) \mathrm{d}\tau ,\\ \displaystyle _0\!D_t^{\gamma } f(t) = \frac{1}{{\varGamma ({\lceil }\gamma {\rceil }-\gamma )}} \frac{d^{{\lceil }\gamma {\rceil }}}{d\tau ^{{\lceil }\gamma {\rceil }}} \int _0^t (t-\tau )^{{\lceil }\gamma {\rceil }-\gamma -1} f(\tau )\mathrm{d}\tau . \end{array} \end{aligned}$$
(14.103)

with \(\gamma >0\). We identify in the last line this operator with the Riemann–Liouville fractional derivative [45,46,47] which recovers for \(\gamma \in \mathbb {N}\) integer-order standard derivatives. We emphasize that (14.101) requires causality, i.e., a distribution of the form \( f(t)\varTheta (t)\); thus, the Laplace transform captures the entire nonzero contributions of the causal distribution. In the diffusion equation (14.72), the Riemann–Liouville fractional derivative is of order \( 0<\beta <1\) with \( {\lceil }\beta {\rceil }=1\). In this case (14.103) then has representation

$$\begin{aligned} \displaystyle _0\!D_t^{\beta } f(t) =\frac{1}{\varGamma (1-\beta )}\frac{d}{dt}\int _0^t (t-\tau )^{-\beta }f(\tau )\mathrm{d}\tau ,\qquad 0<\beta <1 , \quad t>0 . \end{aligned}$$
(14.104)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michelitsch, T.M., Riascos, A.P., Collet, B.A., Nowakowski, A.F., Nicolleau, F.C.G.A. (2020). Generalized Space–Time Fractional Dynamics in Networks and Lattices. In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-38708-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38708-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38707-5

  • Online ISBN: 978-3-030-38708-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics