Skip to main content

On Dynamic Model of Structural Transformations in Solids

  • Chapter
  • First Online:
Nonlinear Wave Dynamics of Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 122))

  • 334 Accesses

Abstract

A two-component model of material with a nonlinear internal interaction force is proposed for describing its structural transformations. An analogy between the equations of a continuous medium and their discrete representation allows demonstrating the effect of quenching of a non-stationary wave, caused by the transfer of energy to internal degrees of freedom. The parameters of the external impact at which the transformation of crystalline lattice takes place are determined. Analytical results are compared with numerical calculations, performed by using the finite difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meshcheryakov, Y.I., et al.: Dynamic structures in shock-loaded copper. Phys. Rev. B. 78(6) (2008)

    Google Scholar 

  2. Truskinovsky, L., Zanzotto, G.: Ericksen’s bar revisited: energy wiggles. J. Mech. Phys. Solids 44(8), 1371–1408 (1996)

    Article  MathSciNet  Google Scholar 

  3. Rosakis, P., Knowles, J.K.: Unstable kinetic relations and the dynamics of solid-solid phase transitions. J. Mech. Phys. Solids 45(11), 2055–2081 (1997)

    Article  MathSciNet  Google Scholar 

  4. Ngan, S.C., Truskinovsky, L.: Thermo-elastic aspects of dynamic nucleation. J. Mech. Phys. Solids 50(6), 1193–1229 (2002)

    Article  MathSciNet  Google Scholar 

  5. Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: Lattice model. SIAM J. Appl. Math. 66(2), 533–553 (2005)

    Article  MathSciNet  Google Scholar 

  6. Knowles, J.K.: Stress-induced phase transitions in elastic solids. Comput. Mech. 22(6), 429–436 (1999)

    Article  MathSciNet  Google Scholar 

  7. Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 2. CRC Press (1990)

    Google Scholar 

  8. Zhilin, P.A.: Advanced problems in mechanics. St. Petersburg 2, 271 (2006)

    Google Scholar 

  9. Vilchevskaya, E.N., Ivanova, E.A., Altenbach, H.: Description of liquid–gas phase transition in the frame of continuum mechanics. Continuum Mech. Thermodyn. 26(2), 221–245 (2014)

    Article  MathSciNet  Google Scholar 

  10. Indeitsev, D., Mochalova, Y.: Mechanics of multi-component media with exchange of mass and non-classical supplies. In: Dynamics of Mechanical Systems with Variable Mass. pp. 165–194. Springer, Vienna (2014)

    Google Scholar 

  11. Jiang, L., Tsai, H.L.: Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127(10), 1167–1173 (2005)

    Article  Google Scholar 

  12. Chen, J.K., et al.: Modeling of femtosecond laser-induced non-equilibrium deformation in metal films. Int. J. Solids Struct. 39(12), 3199–3216 (2002)

    Article  Google Scholar 

  13. Chowdhury, I.H., Xu, X.: Heat transfer in femtosecond laser processing of metal. Numer. Heat Transfer: Part A: Appl. 44(3), 219–232 (2003)

    Article  Google Scholar 

  14. Aero, E.L., Bulygin, A.N., Pavlov, Y.V.: The nonlinear theory of reorganization of structure of superthin crystal layers at intensive loadings. Mater. Phys. Mech. 15, 126–134 (2012)

    Google Scholar 

  15. Braun, O.M., Kivshar, Y.: The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer Science & Business Media (2013)

    Google Scholar 

  16. Erofeev, V.I., Klyueva, N.V.: Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review). Acoust. Phys. 48(6), 643–655 (2002)

    Article  Google Scholar 

  17. Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230(2), 400–410 (2009)

    Article  MathSciNet  Google Scholar 

  18. Slepian, L.I.: Non-stationary elastic waves (1972)

    Google Scholar 

  19. Barakhtin, B.K., Meshcheryakov, Y.I., Savenkov, G.G.: Dynamic and fractal properties of sp-28 steel under high-rate loading. Zh. Tekh. Fiz. 68(10), 43–49 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Vavilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indeitsev, D.A., Semenov, B.N., Skubov, D.Y., Vavilov, D.S. (2020). On Dynamic Model of Structural Transformations in Solids. In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-38708-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38708-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38707-5

  • Online ISBN: 978-3-030-38708-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics