Skip to main content

Fuzzy Modelling Methodologies Based on OKID/ERA Algorithm Applied to Quadrotor Aerial Robots

  • Chapter
  • First Online:
Intelligent Systems: Theory, Research and Innovation in Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 864))

  • 472 Accesses

Abstract

In this paper, we propose to use a state-space Takagi-Sugeno (TS) fuzzy model to tackle quadrotor aerial robots complexities, such as highly nonlinear dynamics, multivariable coupled input and output variables, parametric uncertainty, are naturally unstable and underactuated systems. To estimate the fuzzy model parameters automatically through input and output multivariable dataset, two fuzzy modelling methodologies based on Observer/Kalman Filter Identification (OKID) and Eigensystem Realization Algorithm (ERA) are proposed. In both methods, the fuzzy nonlinear sets of the antecedent space are obtained by a fuzzy clustering algorithm; in this paper we approach the Fuzzy C-Means algorithm. These two methods differ in the way to obtain the fuzzy Markov parameters: a method based on pulse-response histories and another through an Observer/Kalman filter. From the fuzzy Markov parameters, the Fuzzy ERA algorithm is used to estimate the discrete functions in state-space of each submodel. Results for identification of a quadrotor aerial robot, the Parrot AR.Drone 2.0, are presented, demonstrating the efficiency and applicability of these methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context, roll and pitch are Euler angles (with yaw angle) that represent the rotational movements of an object around an axis in the cartesian coordinate system.

References

  1. S. Gupte, P.I.T. Mohandas, J.M. Conrad, A survey of quadrotor unmanned aerial vehicles, in 2012 Proceedings of IEEE Southeastcon (IEEE, 2012), pp. 1–6

    Google Scholar 

  2. S.-J. Chung, A.A. Paranjape, P. Dames, S. Shen, V. Kumar, A survey on aerial swarm robotics. IEEE Trans. Robot. 34(4), 837–855 (2018)

    Article  Google Scholar 

  3. J.S. Silveira Júnior, E.B.M. Costa, L.M.M. Torres, Multivariable fuzzy identification of unmanned aerial vehicles, in XXII Congresso Brasileiro de Automática (CBA 2018) (João Pessoa, Brasil, 2018), pp. 1–8

    Google Scholar 

  4. J.S. Silveira Júnior, E.B.M. Costa, Data-driven fuzzy modelling methodologies for multivariable nonlinear systems, in IEEE International Conference on Intelligent Systems (IS’18) (Funchal, Portugal, 2018), pp. 1–7

    Google Scholar 

  5. Y.B. Dou, M. Xu, Nonlinear aerodynamics reduced-order model based on multi-input Volterra series, in Material and Manufacturing Technology IV, volume 748 of Advanced Materials Research (Trans Tech Publications, 2013), pp. 421–426

    Google Scholar 

  6. S. Solodusha, K. Suslov, D. Gerasimov, A new algorithm for construction of quadratic Volterra Model for a non-stationary dynamic system. IFAC-PapersOnLine 48(11), 982–987 (2015)

    Article  Google Scholar 

  7. Z. Wang, Z. Zhang, K. Zhou, Precision tracking control of piezoelectric actuator using a Hammerstein-based dynamic hysteresis model, in 2016 35th Chinese Control Conference (CCC) (2016), pp. 796–801

    Google Scholar 

  8. J. Kou, W. Zhang, M. Yin, Novel Wiener models with a time-delayed nonlinear block and their identification. Nonlinear Dyn. 85(4), 2389–2404 (2016)

    Article  Google Scholar 

  9. H.K. Sahoo, P.K. Dash, N.P. Rath, Narx model based nonlinear dynamic system identification using low complexity neural networks and robust H\(\infty \) filter. Appl. Soft Comput. 13(7), 3324–3334 (2013)

    Article  Google Scholar 

  10. H. Liu, X. Song, Nonlinear system identification based on NARX network, in 2015 10th Asian Control Conference (ASCC) (2015), pp. 1–6

    Google Scholar 

  11. T. Xiang, F. Jiang, Q. Hao, W. Cong, Adaptive flight control for quadrotor UAVs with dynamic inversion and neural networks, in 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (2016), pp. 174–179

    Google Scholar 

  12. Q. Ma, S. Qin, T. Jin, Complex Zhang neural networks for complex-variable dynamic quadratic programming. Neurocomputing 330, 56–69 (2019)

    Article  Google Scholar 

  13. S. Zaidi, A. Kroll, NOE TS fuzzy modelling of nonlinear dynamic systems with uncertainties using symbolic interval-valued data. Appl. Soft Comput. 57, 353–362 (2017)

    Article  Google Scholar 

  14. M. Sun, J. Liu, H. Wang, X. Nian, H. Xiong, Robust fuzzy tracking control of a quad-rotor unmanned aerial vehicle based on sector linearization and interval matrix approaches. ISA Trans. 80, 336–349 (2018)

    Article  Google Scholar 

  15. E.B.M. Costa, G.L.O. Serra, Optimal recursive fuzzy model identification approach based on particle swarm optimization, in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (IEEE, 2015), pp. 100–105

    Google Scholar 

  16. G. Feng, A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  17. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, in Readings in Fuzzy Sets for Intelligent Systems (Elsevier, 1993), pp. 387–403

    Google Scholar 

  18. E.B.M. Costa, G.L.O. Serra, Robust Takagi-Sugeno fuzzy control for systems with static nonlinearity and time-varying delay, in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2015), pp. 1–8

    Google Scholar 

  19. F. Sun, N. Zhao, Universal approximation for takagi-sugeno fuzzy systems using dynamically constructive method-siso cases, in 2007 IEEE 22nd International Symposium on Intelligent Control (2007), pp. 150–155

    Google Scholar 

  20. K. Zeng, N.-Y. Zhang, W.-L. Xu, A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators. IEEE Trans. Fuzzy Syst. 8(6), 773–780 (2000)

    Article  Google Scholar 

  21. L.M.M. Torres, G.L.O. Serra, State-space recursive fuzzy modeling approach based on evolving data clustering. J. Control Autom. Electr. Syst. 29(4), 426–440 (2018)

    Article  Google Scholar 

  22. D.S. Pires, G.L.O. Serra, Fuzzy Kalman filter modeling based on evolving clustering of experimental data, in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2018), pp. 1–6

    Google Scholar 

  23. P. Garcia-Aunon, M.S. Peñas, J.M.C. García, Parameter selection based on fuzzy logic to improve UAV path-following algorithms. J. Appl. Logic 24, 62–75 (2017)

    Article  MathSciNet  Google Scholar 

  24. G. Serra, C. Bottura, An IV-QR algorithm for neuro-fuzzy multivariable online identification. IEEE Trans. Fuzzy Syst. 15(2), 200–210 (2007)

    Article  Google Scholar 

  25. R. Babuška, Fuzzy Modeling for Control. International Series in Intelligent Technologies (Kluwer Academic Publishers, 1998)

    Google Scholar 

  26. J. Bezdek, R. Erlich, W. Full, FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  27. L.-X. Wang. A Course in Fuzzy Systems and Control (Prentice-Hall Press, 1999)

    Google Scholar 

  28. J.N. Juang, Applied System Identification (Prentice-Hall Inc., Upper Saddle River, 1994)

    MATH  Google Scholar 

  29. J.N. Juang, M. Phan, L.G. Horta, R.W. Longman, Identification of observer/Kalman filter Markov parameters—theory and experiments. J. Guidance Control Dyn 16, 320–329 (1993)

    Article  Google Scholar 

  30. D. Sanabria, AR Drone Simulink Development-Kit V1.1 - File Exchange—MATLAB Central. Available at: http://bit.ly/AD2Toolbox (2014). Last accessed on 09 Jan. 2019

  31. J.S. Silveira Júnior, ARDrone2Data. Available at: http://bit.ly/ARDrone2Data (2019). Last acessed on 23 Jan. 2019

Download references

Acknowledgements

This work was financed by Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) under UNIVERSAL-01298/17 and TIAC-06615/16 projects and was supported by Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA). Also, the authors would like to thank Prof. Luís Miguel Magalhães Torres and Prof. Selmo Eduardo Rodrigues Júnior for the important contributions in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Sampaio Silveira Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampaio Silveira Júnior, J., Marques Costa, E.B. (2020). Fuzzy Modelling Methodologies Based on OKID/ERA Algorithm Applied to Quadrotor Aerial Robots. In: Jardim-Goncalves, R., Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Intelligent Systems: Theory, Research and Innovation in Applications. Studies in Computational Intelligence, vol 864. Springer, Cham. https://doi.org/10.1007/978-3-030-38704-4_13

Download citation

Publish with us

Policies and ethics