Skip to main content

Interpretable Convolutional Neural Networks Using a Rule-Based Framework for Classification

  • Chapter
  • First Online:
Intelligent Systems: Theory, Research and Innovation in Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 864))

Abstract

A convolutional neural network (CNN) learning structure is proposed, with added interpretability-oriented layers, in the form of Fuzzy Logic-based rules. This is achieved by creating a classification layer based on a Neural Fuzzy classifier, and integrating it into the overall learning mechanism within the deep learning structure. Using this new structure, one can extract linguistic Fuzzy Logic-based rules from the deep learning structure directly, and link this information to input features, which enhances the interpretability of the overall system. The classification layer is realised via a Radial Basis Function (RBF) Neural-Network, that is a direct equivalent of a class of Fuzzy Logic-based systems. In this work, the development of the RBF neural-fuzzy system and its integration into the deep-learning CNN is presented. The proposed hybrid CNN RBF-NF structure can form a fundamental building block, towards building more complex deep-learning structures with Fuzzy Logic-based interpretability. Using simulation results on benchmark data (MNIST handwriting digits and MNIST Fashion) we show that the proposed learning structure maintains a good level of forecasting/prediction accuracy compared to CNN deep learning structures. Crucially, we also demonstrate in both cases the resulting interpretability, in the form of linguistic rules that link the classification decisions to the input feature space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Schaprie, Computer Science 511 Theoretical Machine Learning (Computer Science Department, Princeton University, Princeton, 2008)

    Google Scholar 

  2. M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  3. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  4. J. Gong, M.D. Goldman, J. Lach, Deep motion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis, in 2016 IEEE Wireless Health, WH 2016 (2016), pp 164–171

    Google Scholar 

  5. T. Segreto, A. Caggiano, S. Karam, R. Teti, Vibration sensor monitoring of nickel-titanium alloy turning for machinability evaluation. Sensors (Switzerland) 17(12) (2017)

    Google Scholar 

  6. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp 1–9

    Google Scholar 

  7. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 25, ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates, Inc., 2012), pp 1097–1105

    Google Scholar 

  8. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. J. Deng, W. Dong, R. Socher, L. Li, ImageNet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255

    Google Scholar 

  10. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition (2015). CoRR abs/1512.03385

    Google Scholar 

  11. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. CoRR (2014)

    Google Scholar 

  12. G. Panoutsos, M. Mahfouf, A neural-fuzzy modelling framework based on granular computing: concepts and applications. Fuzzy Sets Syst. 161(21), 2808–2830 (2010)

    Article  MathSciNet  Google Scholar 

  13. G. Panoutsos, M. Mahfouf, G.H. Mills, B.H. Brown, A generic framework for enhancing the interpretability of granular computing-based information, in 2010 5th IEEE International Conference Intelligent Systems. IEEE (2010), pp. 19–24

    Google Scholar 

  14. R.P. Paiva, A. Dourado, Interpretability and learning in neuro-fuzzy systems. Fuzzy Sets Syst. 147(1), 17–38 (2004)

    Article  MathSciNet  Google Scholar 

  15. A. Muniategui, B. Hériz, L. Eciolaza, M. Ayuso, A. Iturrioz, I. Quintana, P. Álvarez, Spot welding monitoring system based on fuzzy classification and deep learning, in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2017), pp. 1–6

    Google Scholar 

  16. Y. Deng, Z. Ren, Y. Kong, F. Bao, Q. Dai, A hierarchical fused fuzzy deep neural network for data classification. IEEE Tran. Fuzzy Syst. 25(4), 1006–1012 (2017)

    Article  Google Scholar 

  17. D.S. Broomhead, D. Lowe, Radial Basis Functions, Multi-variable Functional Interpolation and Adaptive Networks Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom) (1988)

    Google Scholar 

  18. K. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to Kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  19. M.Y. Chen, D.A. Linkens, A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans. Syst. Man Cybern. B Cybern. 31(5), 781–90 (2001)

    Article  Google Scholar 

  20. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (2011), pp 315–323

    Google Scholar 

  21. S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015). CoRR abs/1502.03167

    Google Scholar 

  22. T. Schaul, I. Antonoglou, D. Silver, Unit Tests for Stochastic Optimization (2013). arXiv:13126055 [cs] 1312.6055

  23. Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in optimizing recurrent networks, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 8624–8628

    Google Scholar 

  24. J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    Google Scholar 

  25. N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. S. Al-sharhan, F. Karray, W. Gueaieb, O. Basir, Fuzzy entropy: a brief survey, in 10th IEEE International Conference on Fuzzy Systems (Cat. No.01CH37297), vol. 3, vol. 2 (2001), pp. 1135–1139

    Google Scholar 

  27. M.D. Zeiler, ADADELTA: An Adaptive Learning Rate Method (2012). CoRR abs/1212.5701

    Google Scholar 

  28. D. Cireşan, U. Meier, J. Schmidhuber, Multi-column Deep Neural Networks for Image Classification (2012). arXiv:12022745 [cs] 1202.2745

  29. H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms (2017). CoRR abs/1708.07747, 1708.07747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xi, Z., Panoutsos, G. (2020). Interpretable Convolutional Neural Networks Using a Rule-Based Framework for Classification. In: Jardim-Goncalves, R., Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Intelligent Systems: Theory, Research and Innovation in Applications. Studies in Computational Intelligence, vol 864. Springer, Cham. https://doi.org/10.1007/978-3-030-38704-4_1

Download citation

Publish with us

Policies and ethics