Skip to main content

Total Marrow/Lymphoid Irradiation in the Conditioning Regimen for Haploidentical T-Cell-Depleted Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia: The Perugia Experience

  • Chapter
  • First Online:

Abstract

This chapter briefly outlines Perugia University’s experience with haploidentical hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML). It describes modifications to the conditioning regimens over time, focusing on the contribution from radiation oncology and the changes to the haploidentical graft. It reports outcomes in a subset of elderly or unfit young patients with AML who received an immunosuppressive, myeloablative, low-toxic total marrow/lymphoid irradiation (TMLI)-based conditioning regimen and a CD34+ inoculum with Treg/Tcon adoptive immunotherapy. Finally, perspectives and future directions of TMLI are illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aristei C, Carotti A, Palazzari E, et al. The total body irradiation schedule affects acute leukemia relapse after matched T cell-depleted hematopoietic stem cell transplantation. Int J Radiat Oncol Biol Phys. 2016;96:832–9.

    Article  Google Scholar 

  2. Reisner Y, Hagin D, Martelli MF. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118:6006–17.

    Article  CAS  Google Scholar 

  3. Shank B, O’Reilly RJ, Cunningham I, et al. Total body irradiation for bone marrow transplantation: the Memorial Sloan-Kettering Cancer Center experience. Radiother Oncol. 1990;18(Suppl 1):68–81.

    Article  Google Scholar 

  4. Shank B, Andreeff M, Li D. Cell survival kinetics in peripheral blood and bone marrow during total body irradiation for marrow transplantation. Int J Radiat Oncol Biol Phys. 1983;9:1613–23.

    Article  CAS  Google Scholar 

  5. Terenzi A, Aristei C, Aversa F, et al. Efficacy of fludarabine as an immunosuppressor for bone marrow transplantation conditioning: preliminary results. Transplant Proc. 1996;28:3101.

    CAS  PubMed  Google Scholar 

  6. Aversa F, Terenzi A, Carotti A, et al. Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia. J Clin Oncol. 1999;17:1545–50.

    Article  CAS  Google Scholar 

  7. Latini P, Aristei C, Aversa F, et al. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation. Radiother Oncol. 1991;22:127–32.

    Article  CAS  Google Scholar 

  8. Aristei C, Latini P, Terenzi A, et al. Total body irradiation-based regimen in the conditioning of patients submitted to haploidentical stem cell transplantation. Radiother Oncol. 2001;58:247–9.

    Article  CAS  Google Scholar 

  9. Aristei C, Latini P, Falcinelli F, et al. The role of total body irradiation in the conditioning of patients receiving haploidentical stem cell transplantation. Tumori. 2001;87:402–6.

    Article  CAS  Google Scholar 

  10. Storb R, Raff RF, Appelbaum FR, et al. Comparison of fractionated to single-dose total body irradiation in conditioning canine littermates for DLA-identical marrow grafts. Blood. 1989;74:1139–43.

    Article  CAS  Google Scholar 

  11. Down JD, Tarbell NJ, Thames HD, et al. Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood. 1991;77:661–9.

    Article  CAS  Google Scholar 

  12. Storb R, Raff RF, Appelbaum FR, et al. Fractionated versus single-dose total body irradiation at low and high dose rates to condition canine littermates for DLA-identical marrow grafts. Blood. 1994;83:3384–9.

    Article  CAS  Google Scholar 

  13. Terenzi A, Aristei C, Aversa F, et al. Comparison of immunosuppressive effects of single-dose and hyperfractionated total body irradiation. Transplant Proc. 1994;26:3217.

    CAS  PubMed  Google Scholar 

  14. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.

    Article  CAS  Google Scholar 

  15. Reisner Y, Martelli MF. Bone marrow transplantation across HLA barriers by increasing the number of transplanted cells. Immunol Today. 1995;16:437–40.

    Article  CAS  Google Scholar 

  16. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell–depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.

    Article  CAS  Google Scholar 

  17. Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.

    Article  Google Scholar 

  18. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.

    Article  CAS  Google Scholar 

  19. Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.

    Article  CAS  Google Scholar 

  20. Velardi A, Ruggeri L, Mancusi A, et al. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol. 2009;21:525–30.

    Article  CAS  Google Scholar 

  21. Hoffmann P, Ermann J, Edinger M, et al. Donor-type CD4(1)CD25(1) regulatory T cells suppress lethal acute graft versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196:389–99.

    Article  CAS  Google Scholar 

  22. Nguyen VH, Shashidhar S, Chang DS, et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood. 2008;111:945–53.

    Article  CAS  Google Scholar 

  23. Trenado A, Charlotte F, Fisson S, et al. Recipient type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus host disease while maintaining graft-versus leukemia. J Clin Invest. 2003;112:1688–96.

    Article  CAS  Google Scholar 

  24. Edinger M, Hoffmann P, Ermann J, et al. CD41CD251 regulatory T cells preserve graft versus-tumor activity while inhibiting graft-versus host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.

    Article  CAS  Google Scholar 

  25. Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8.

    Article  Google Scholar 

  26. Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.

    Article  CAS  Google Scholar 

  27. Surveillance, Epidemiology, and End Results (SEER) Program. Population Estimates Used in NCI’s SEER∗Stat Software. Bethesda, MD: SEER Program, National Cancer Institute; 2015. http://seer.cancer.gov/popdata/methods.html. Accessed 08 April 2019.

  28. Wong JY, Liu A, Schultheiss T, et al. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transplant. 2006;12:306–15.

    Article  Google Scholar 

  29. Rosenthal J, Wong J, Stein A, et al. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117:309–15.

    Article  CAS  Google Scholar 

  30. Hui SK, Kapatoes J, Fowler J, et al. Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med Phys. 2005;32:3214–24.

    Article  Google Scholar 

  31. Hui SK, Verneris MR, Higgins P, et al. Helical tomotherapy targeting total bone marrow - first clinical experience at the University of Minnesota. Acta Oncol. 2007;46:250–5.

    Article  Google Scholar 

  32. Wong JY, Forman S, Somlo G, et al. Dose escalation of total marrow irradiation with concurrent chemotherapy in patients with advanced acute leukemia undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2013;85:148–56.

    Article  Google Scholar 

  33. Stein A, Palmer J, Tsai NC, et al. Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transplant. 2017;23:618–24.

    Article  Google Scholar 

  34. Jensen LG, Stiller T, Wong JYC, et al. Total marrow lymphoid irradiation/fludarabine/melphalan conditioning for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24:301–7.

    Article  CAS  Google Scholar 

  35. Hui S, Brunstein C, Takahashi Y, et al. Dose escalation of total marrow irradiation in high-risk patients undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:1110–6.

    Article  Google Scholar 

  36. Sorror ML, Storb RF, Sandmaier BM, et al. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56.

    Article  Google Scholar 

  37. Gupta V, Tallman MS, He W, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116:1839–48.

    Article  CAS  Google Scholar 

  38. Bashey A, Zhang X, Sizemore C, et al. T cell replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post- transplantation cyclophosphamide. Results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6.

    Article  CAS  Google Scholar 

  39. Scaradavou A, Brunstein CG, Eapen M, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121:752–8.

    Article  CAS  Google Scholar 

  40. Di Bartolomeo P, Santarone S, De Angelis G, et al. Haploidentical unmanipulated, G-CSFprimed bone marrow transplantation for patients with high risk hematological malignancies. Blood. 2013;121:849–57.

    Article  Google Scholar 

  41. Stefan O, Ciurea M-JZ, Bacigalupo AA. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Aristei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aristei, C. et al. (2020). Total Marrow/Lymphoid Irradiation in the Conditioning Regimen for Haploidentical T-Cell-Depleted Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia: The Perugia Experience. In: Wong, J., Hui, S. (eds) Total Marrow Irradiation. Springer, Cham. https://doi.org/10.1007/978-3-030-38692-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38692-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38691-7

  • Online ISBN: 978-3-030-38692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics