Skip to main content

Performance Evaluation of Citywide Intersections Traffic Control Algorithm inVANETs-Based

  • Conference paper
  • First Online:
Internet of Vehicles. Technologies and Services Toward Smart Cities (IOV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11894))

Included in the following conference series:

Abstract

The massive improvement in wireless communications pertains a real time and accurate delivery of information, which makes it possible to remotely control and manage a wide number of applications and services. The ability to connect to mobile and fast-moving nodes can aid in providing or obtaining information from vehicles that in turn provides a diverse picking in the development of vehicular communications and control. This includes all type of vehicular communications such as Vehicle to Infrastructure (V2I) and the Vehicle-to-Vehicle (V2V) communications. In this paper, we try to enhance traffic flow at intersections by simulating an improved VANET-based control algorithm. The study focuses on the flow of traffic across multiple adjacent intersections in a city where each intersection is equipped with a Roadside Unit (RSU). We believe that the communication between RSU at a given intersection and nearby vehicles, RSU and other surrounding RSUs (RSU2RSU) will affect the flow of the vehicles positively. We also consider the need to minimize the required time to cross an intersection particularly if a vehicle is an emergency vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, Y., Cai, H., Shi, J.: An improved realistic mobility model and mechanism for VANET based on SUMO and NS3 collaborative simulations. In: 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, pp. 900–905 (2014)

    Google Scholar 

  2. Saini, T., Zahoor, S., Bedekar, M., Atote, B., Panicker, S.: Optimization of signal behavior through dynamic traffic control. proposed algorithm with traffic profiling. In: 2nd International Conference on Contemporary Computing and Informatics, pp. 598–602 (2016)

    Google Scholar 

  3. Chen, L.W., Chang, C.C.: Cooperative traffic control with green wave coordination for multiple intersections based on the internet of vehicles. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1321–1335 (2017)

    Google Scholar 

  4. Ma, D., Luo, X., Li, W., Jin, S., Guo, W., Wang, D.: Traffic demand estimation for lane groups at signal-controlled intersections using travel times from video-imaging detectors. IET Intell. Transp. Syst. 11(4), 222–229 (2017)

    Google Scholar 

  5. Research and Innovative Technology Administration: Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 2: Logical Link Control. ISO 8802–2 IEEE 802.2, 1st (1989)

    Google Scholar 

  6. Benslimane, A., Taleb, T., Sivaraj, R.: Dynamic clustering-based adaptive mobile gateway management in integrated VANET-3G heterogeneous wireless networks. IEEE J. Commun. 29(3), 559–570 (2011)

    Google Scholar 

  7. Zheng, B., Lin, C.W., Liang, H., Shiraishi, S., Li, W., Zhu, Q.: Delay-aware design, analysis and verification of intelligent intersection management. In: IEEE International Conference on Smart Computing, Hong Kong, pp. 1–8 (2017)

    Google Scholar 

  8. Wu, W., Zhang, W., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015)

    Google Scholar 

  9. Saeed, I., Elhadef, M.: Performance evaluation of an IoV-based intersection traffic control approach. In: IEEE Conference on IoT, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, Canada, pp. 1777–1784 (2018)

    Google Scholar 

  10. Bedekar, M., Atote, B., Panicker, S.: Centralized approach towards intelligent traffic signal control. In: International Conference on ICT for Competitive Strategies, p. 63 (2016)

    Google Scholar 

  11. Zhao, Y.F., Wang, F.Y., Gao, H., Zhu, F.H., Lv, Y.S., Ye, P.J.: Content-based recommendation for traffic signal control. In: IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, pp. 1183–1188 (2015)

    Google Scholar 

  12. Pasin, M., Scheuermann, B., Moura, R.F.D.: VANET-based intersection control with a throughput/fairness tradeoff. In: 8th IFIP Wireless and Mobile Networking Conference, pp. 208–215 (2015)

    Google Scholar 

  13. Baselt, D., Knorr, F., Scheuermann, B., Schreckenberg, M., Mauve, M.: Merging lanes – fairness through communication. Veh. Commun. 1(2), 97–104 (2014)

    Google Scholar 

  14. Burdett, R., Casey, B., Becker, K.H.: Optimising offsets and bandwidths in vehicle traffic networks. ANZIAM J. 55, 77–108 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Hasan, S., Elhadef, M.: A citywide distributed inVANETs-based protocol for managing traffic. In: Park, J., Loia, V., Choo, K.K., Yi, G. (eds.) MUE/FutureTech-2018. LNEE, vol. 518, pp. 117–124. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1328-8_15

    Chapter  Google Scholar 

  16. Elhadef, M.: An adaptable inVANETs-based intersection traffic control algorithm. In: IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence, pp. 2387–2392 (2015)

    Google Scholar 

  17. Pi, S., Sun, B.: Fuzzy controllers based multipath routing algorithm in MANET. In: International Conference on Applied Physics and Industrial Engineering, pp. 1178–1185 (2012)

    Google Scholar 

  18. Upadhayay, S., Sharma, M.: Performance evaluation of fuzzy routing algorithms for a new fuzzy mixed metric approach. Int. J. Comput. Sci. Netw. Secur. 8(4), 21–28 (2008)

    MATH  Google Scholar 

  19. Doja, M., Alam, B., Sharma, V.: Analysis of reactive routing protocol using fuzzy inference system. In: AASRI Conference on Parallel and Distributed Computing Systems, pp. 164–169 (2013)

    Google Scholar 

  20. Gajjar, S., Sarkar, M., Dasgupta, K.: FAMACRO: fuzzy and ant colony optimization basedMAC/routing cross-layer protocol for wireless sensor networks. In: International Conference on Information and Communication Technologies, vol. 8, pp. 1014–1021 (2015)

    Google Scholar 

  21. Ganda, J.: Simulation of routing option by using two layers fuzzy logic and Dijkstra’s algorithm in MATLAB 7.0. J. Electr. Electron. Eng. 1(1), 11–18 (2016)

    Google Scholar 

  22. Biswas, S.: Fuzzy real time Dijkstra’s algorithm. Int. J. Comput. Intell. Res. 13(4), 631–6404 (2017)

    Google Scholar 

  23. veins.car2x.org. http://veins.car2x.org/features/. Accessed 17 June 2019

  24. Tabaza, H., Elhadef, M., Saeed, I.: Performance evaluation of an adaptable invanets-based traffic control. In: ICT Conferences, Society, and Human Beings, Porto (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasan, S., Elhadef, M. (2020). Performance Evaluation of Citywide Intersections Traffic Control Algorithm inVANETs-Based. In: Hsu, CH., Kallel, S., Lan, KC., Zheng, Z. (eds) Internet of Vehicles. Technologies and Services Toward Smart Cities. IOV 2019. Lecture Notes in Computer Science(), vol 11894. Springer, Cham. https://doi.org/10.1007/978-3-030-38651-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38651-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38650-4

  • Online ISBN: 978-3-030-38651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics