Skip to main content

Uplink Access Control in Narrowband IoT

  • Conference paper
  • First Online:
Internet of Vehicles. Technologies and Services Toward Smart Cities (IOV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11894))

Included in the following conference series:

  • 1303 Accesses

Abstract

In order to provide low-power wide area network (LPWAN) services, 3GPP adopted the Narrow-Band Internet of Things (NB-IoT) standard in 2016. NB-IoT is expected to become the transmission communication standard for providing a large number of IoT devices in 5G networks. However, development of NB-IoT is still in its earlier stage and encounters several challenges. First, NB-IoT is designed for machine type communication. Generally, connection and transmission delays are not the primary consideration for this type of communication. Thus, it is not able to meet different delay requirements of different types of IoT applications. For example, for life-threatening or life-saving applications, they would require very high reliable and low latency transmission of emergency messages. Secondly, when a user equipment wants to associate to a NB-IoT network, it must synchronize with the regional base station (eNB) through the random access channel (RACH) procedure. A large number of IoT devices will cause a big challenge to the RACH procedure. Therefore, in this paper, we aim to improve the RACH procedure to handle a large number of IoT devices without affecting the transmission delay of emergent messages. We propose a Dynamic RACH Resource Allocation (DRRA) scheme which integrates with resource allocation scheme and Access Class Barring (ACB) scheme to improve the delay and throughput of the RACH procedure. Our simulation results show that the proposed DRRA scheme is able to achieve higher access success rate, higher system throughput, and low transmission delay for emergent message as compared to the original RACH procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popli, S., Jha, R.K., Jain, S.: A survey on energy efficient narrowband internet of things (NBIoT): architecture, application and challenges. IEEE Access 7, 16739–16776 (2019)

    Article  Google Scholar 

  2. 3GPP: NB-IoT—Random access design. 3GPP TSG-RAN1 #83 R1-157424, Ericsson, Stockholm, Sweden (2015)

    Google Scholar 

  3. 3GPP: Evolved universal terrestrial radio access; radio resource control protocol. 3GPP TS 36.331 specification v13.4.0 (2017)

    Google Scholar 

  4. 3GPP. RAN improvements for machine-type communications. 3GPP TR 37.868 v11.0.0 (2011)

    Google Scholar 

  5. Ratasuk, R., Mangalvedhe, N., Xiong, Z., Robert, M., Bhatoolaul, D.: Enhancements of narrowband IoT in 3GPP Rel-14 and Rel-15. In: IEEE Conference on Standards for Communications and Networking (CSCN). IEEE, Helsinki (2017)

    Google Scholar 

  6. Wang, Y.-P.E., et al.: A primer on 3GPP narrowband internet of things. IEEE Commun. Mag. 55(3), 127–133 (2017)

    Article  Google Scholar 

  7. Feltrin, L., Tsoukaneri, G., Condoluci, M., Buratti, C., Mahmoodi, T., Dohler, M.: Narrowband IoT: a survey on downlink and uplink perspectives. IEEE Wirel. Commun. 26(1), 78–86 (2019)

    Article  Google Scholar 

  8. Bello, H., Jian, X., Wei, Y., Chen, M.: Energy-delay evaluation and optimization for NB-IoT PSM with periodic uplink reporting. IEEE Access 7, 3074–3081 (2019)

    Article  Google Scholar 

  9. Harwahyu, R., Cheng, R.-G., Wei, C.-H., Sari, R.F.: Optimization of random access channel in NB-IoT. IEEE Internet Things J. 5(1), 391–402 (2018)

    Article  Google Scholar 

  10. Azari, A., Hossain, M.I., Markendahl, J.I.: RACH dimensioning for reliable MTC over cellular networks. In: Vehicular Technology Conference, IEEE, Sydney (2017)

    Google Scholar 

  11. Jiang, N., Deng, Y., Condoluci, M., Guo, W., Nallanathan, A., Dohler, M.: RACH preamble repetition in NB-IoT network. IEEE Commun. Lett. 22(6), 1244–1247 (2018)

    Article  Google Scholar 

  12. Harwahyu, R., Cheng, R.-G., Tsai, W.-J., Hwang, J.-K., Bianchi, G.: Repetitions versus retransmissions: trade-off in configuring NB-IoT random access channels. IEEE Internet Things J. 6(2), 3796–3805 (2019)

    Article  Google Scholar 

  13. Leyva-Mayorga, I., Rodriguez-Hernandez, M.A., Pla, V., Martinez-Bauset, J., Tello-Oquendo, L.: Adaptive access Type Barring for efficient mMTC. Comput. Netw. 149, 252–264 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Hung Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hwang, RH., Peng, MC., Tu, BH. (2020). Uplink Access Control in Narrowband IoT. In: Hsu, CH., Kallel, S., Lan, KC., Zheng, Z. (eds) Internet of Vehicles. Technologies and Services Toward Smart Cities. IOV 2019. Lecture Notes in Computer Science(), vol 11894. Springer, Cham. https://doi.org/10.1007/978-3-030-38651-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38651-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38650-4

  • Online ISBN: 978-3-030-38651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics