Skip to main content

Accelerated Promethee Algorithm Based on Dimensionality Reduction

  • Conference paper
  • First Online:
Internet of Vehicles. Technologies and Services Toward Smart Cities (IOV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11894))

Included in the following conference series:

Abstract

This paper presents an accelerated Promethee (Preference Ranking Organization METHod for Enrichment Evaluations) multi-criteria algorithm based on dimensionality reduction in large scale environments. In our context, the Promethee algorithm is used to select from a large set of objects, one or a small set of objects with a good compromise between several qualitative and quantitative criteria. The exact solution can be used by applying the exact multi-criteria Promethee algorithm. However, the drawback, with this type of exact algorithm, is the long execution time due to the combinatorial aspect of the problem. The exact Promethee computing time is linked both to the dimension of the problem (number of qualitative and quantitative criteria) and the size of the problem (number of objects). To address the previous drawback, we propose to accelerate the Promethee algorithm in combining the exact Promethee algorithm with an algorithm inherited from the Machine Learning (ML) field. The experiments demonstrate the potential of our approach under different scenarios to accelerate the respond time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson, D.A., Somers, K., Harvey, H.H.: Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence? Am. Nat. 133(03), 436–453 (1989)

    Article  Google Scholar 

  2. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: Promethee: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010)

    Article  Google Scholar 

  3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  4. Cérin, C., Menouer, T., Lebbah, M.: Accelerating the computation of multi-objectives scheduling solutions for cloud computing. In: 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2), pp. 49–56, November 2018

    Google Scholar 

  5. Ding, L., Zeng, S., Kang, L.: A fast algorithm on finding the non-dominated set in multi-objective optimization. In: The 2003 Congress on Evolutionary Computation 2003, CEC 2003, vol. 4, pp. 2565–2571, December 2003

    Google Scholar 

  6. Grid5000: https://www.grid5000.fr/

  7. Brans, J.P., Mareschal, B.: Promethee Methods. In: Figueira, J., Greco, S., Ehrogott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78, pp. 163–186. Springer, New York (2005). https://doi.org/10.1007/0-387-23081-5_5

    Chapter  Google Scholar 

  8. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)

    Article  MathSciNet  Google Scholar 

  9. Lai, Y.-J., Liu, T.-Y., Hwang, C.-L.: Topsis for MODM. Eur. J. Oper. Res. 76(3), 486–500 (1994). Facility Location Models for Distribution Planning

    Article  Google Scholar 

  10. Menouer, T., Darmon, P.: New profile recommendation approach based on multi-criteria algorithm. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4961–4966, December 2018

    Google Scholar 

  11. Menouer, T., Darmon, P.: New scheduling strategy based on multi-criteria decision algorithm. In: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 101–107, February 2019

    Google Scholar 

  12. Opricovic, S., Tzeng, G.-H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    Article  Google Scholar 

  13. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  14. Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation (promethee). Int. J. Eng. Sci. Invent. 2, 28–34 (2013)

    Google Scholar 

  15. Taillandier, P., Stinckwich, S.: Using the Promethee multi-criteria decision making method to define new exploration strategies for rescue robots. In: International Symposium on Safety, Security, and Rescue Robotics (2011)

    Google Scholar 

Download references

Acknowledgments

We thank the Grid5000 team for their help to use the testbed. Grid’5000 is supported by a scientific interest group (GIS) hosted by Inria and including CNRS, RENATER and several universities as well as other organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Menouer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menouer, T., CĂ©rin, C., Darmon, P. (2020). Accelerated Promethee Algorithm Based on Dimensionality Reduction. In: Hsu, CH., Kallel, S., Lan, KC., Zheng, Z. (eds) Internet of Vehicles. Technologies and Services Toward Smart Cities. IOV 2019. Lecture Notes in Computer Science(), vol 11894. Springer, Cham. https://doi.org/10.1007/978-3-030-38651-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38651-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38650-4

  • Online ISBN: 978-3-030-38651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics