Skip to main content

Riemann–Liouville Fractional Fundamental Theorem of Calculus and Riemann–Liouville Fractional Polya Integral Inequality and the Generalization to Choquet Integral Case

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 886))

Abstract

Here we present the right and left Riemann–Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann–Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann–Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting. See also [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.A. Anastassiou, Intelligent Mathematics: Computational Analysis (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  2. G.A. Anastassiou, Riemann-Liouville fractional fundamental theorem of Calculus and Riemann-Liouville Fractional Polya type integral inequality and its extension to Choquet integral setting, Bulletin of Korean Mathematical Society (2019)

    Google Scholar 

  3. G. Choquet, Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  4. D. Denneberg, Non-additive Measure and Integral (Kluwer Academic Publishers, Boston, 1994)

    Book  Google Scholar 

  5. I. Podlubny, Fractional Differentiation Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  6. G. Polya, Ein Mittelwertsatz für Funktionen mehrerer Veränderlichen. Tohoku Math. J. 19, 1–3 (1921)

    MATH  Google Scholar 

  7. G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. I (Springer, Berlin, 1925). (German)

    Book  Google Scholar 

  8. G. Polya, G. Szegö, Problems and Theorems in Analysis, vol. I, Classics in Mathematics (Springer, Berlin, 1972)

    Book  Google Scholar 

  9. G. Polya, G. Szegö, Problems and Theorems in Analysis, vol. I, Chinese edn (1984)

    Google Scholar 

  10. F. Qi, Polya type integral inequalities: origin, variants, proofs, refinements, generalizations, equivalences, and applications. RGMIA, Res. Rep. Coll., article no. 20, vol. 16 (2013). http://rgmia.org/v16.php

  11. M. Sugeno, A note on derivatives of functions with respect to fuzzy measures. Fuzzy Sets Syst. 222, 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  12. E.T. Whittaker, G.N. Watson, A Course in Modern Analysis (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Anastassiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassiou, G.A. (2020). Riemann–Liouville Fractional Fundamental Theorem of Calculus and Riemann–Liouville Fractional Polya Integral Inequality and the Generalization to Choquet Integral Case. In: Intelligent Analysis: Fractional Inequalities and Approximations Expanded. Studies in Computational Intelligence, vol 886. Springer, Cham. https://doi.org/10.1007/978-3-030-38636-8_17

Download citation

Publish with us

Policies and ethics