Skip to main content

Scuffing Load Carrying Capacity of Cylindrical, Bevel and Hypoid Gears: Flash Temperature Method

  • Chapter
  • First Online:
Book cover Gears

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 11))

  • 1159 Accesses

Abstract

In this chapter, the basic concepts of the scuffing damage of the gears are first described, framing the calculation of scuffing load carrying capacity of cylindrical, bevel and hypoid gears according to the flask temperature method. The fundamentals of the Blok’s theory that ascribes the cause of scuffing to a sudden breakdown of the lubricant oil film are recalled, also lingering on the transition diagrams in lubricated contacts and on the coefficient of friction at incipient scuffing . The flash temperature is then determined for the aforementioned gears, showing how it strongly depends on the coefficient of friction and other influence factors described in detail. The contact temperature and scuffing temperature are therefore defined and indications are given on the safety factor for scuffing . A large part of the chapter is reserved for the procedures to calculate the tooth bending strength of these types of gears in accordance with the ISO standards , highlighting when deemed necessary as the relationships used by the same ISO are founded on the theoretical bases previously recalled. Finally, indications are given on cold scuffing , with insights on the proper scuffing (warm scuffing ) and references to empirical formulae used in this regard in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal HA (1997) A remark on the flash temperature theory. Int Commun Heat Mass Transfer 24(2):241–250

    Article  Google Scholar 

  • Aghababaei R, Warner DH, Molinari JF (2016) Critical length scale controls adhesive wear mechanisms. Nat Commun 7

    Google Scholar 

  • Alban LE (1985) Systematic analysis of gear failures. American Society for Metals, Metals Park, Ohio

    Google Scholar 

  • Almen JO, Boegehold AL (1935) Rear axle gears: factors which influence their life. Proc Am Soc Test Mater 25(2):99–146

    Google Scholar 

  • Almen JO (1935) Durability of spiral-bevel gears for automobile, Part one. Autom Ind 73(20):662–668, and 73(21):696–701

    Google Scholar 

  • Almen JO (1942) Facts and fallacies of stress determination. SAE Trans 50(9):52–61

    Google Scholar 

  • Almen JO, Straub JC (1948, June 4) Aircraft Gearing, Analysis of Test and Data Service. Research Laboratories Division, General Motors Corporation, Detroit, Michigan, AGMA

    Google Scholar 

  • Almen JO (1950) Surface determination of gear teeth. In: Burwell JT (ed) Mechanical Wear. Am Soc Metals, Cleveland, OH, pp 229–288

    Google Scholar 

  • Andersson S, Salas-Russo E (1994) The influence of surface roughness and oil viscosity on the transition in mixed lubricated sliding steel contacts. Wear 174(1–2):71–79

    Article  Google Scholar 

  • Andersson S, Söderberg A, Björklund S (2007) Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol Int 40(4):580–587

    Article  Google Scholar 

  • Barwell FT, Milne AA (1952) Criteria governing scuffing failure. J Inst Petrol 38:624–632

    Google Scholar 

  • Bathgate J, Kendall RB, Moorhouse P (1970) Thermal aspects of gear lubrication. Wear 15(2):117–129

    Article  Google Scholar 

  • Begelinger A, de Gee AWJ (1974) Thin film lubrication of sliding point contacts of AISI 52100 steel. Wear 28:103–114

    Article  Google Scholar 

  • Begelinger A, de Gee AWJ (1982) Failure of thin film lubrication—a detailed study of the lubricant film breakdown mechanism. Wear 77:57–63

    Article  Google Scholar 

  • Bloch HP, Geitner FK (1999) Machinery failure analysis and troubleshooting. Gulf Professional Publishing, Gulf Publishing Company, Houston, TX

    Google Scholar 

  • Blok H (1937a) Measurements of temperature flashes on gear teeth under extreme pressure conditions. Proc Gen Discuss Lubr Inst Mech Eng 2:18–22

    Google Scholar 

  • Blok H (1937b) Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proc Inst Mech Eng Gen Discuss Lubr 2:222–235

    Google Scholar 

  • Blok H (1937c) Les températures de surface dans des conditions de graissage sous pressions extrêmes. In: Proceedings of the 2nd World Petroleum Congress, Paris, Section IV, III, pp 151–182

    Google Scholar 

  • Blok H (1937d) Surface temperature measurements on gear teeth under extreme pressure lubricating conditions. Power Trans 653–656

    Google Scholar 

  • Blok H (1940) Fundamental mechanical aspects of boundary lubrication. SAE Trans 35:54–68

    Google Scholar 

  • Blok H (1958) Lubrication as a gear design factor. In: Proceedings of international conference on gearing. Institution of Mechanical Engineers, London, pp 144–158

    Google Scholar 

  • Blok H (1963a) The flash temperature concept. Wear 6(6):483–494

    Article  Google Scholar 

  • Blok H (1963b) Inverse problems in hydrodynamic lubrication and design for lubricated flexible surfaces. In: Proceedings of the international symposium on lubrication and wear, Houston, McCutchan Publishing Corporation, Berkeley, CA, pp 1–151

    Google Scholar 

  • Blok H (1969) The thermal-network method for predicting bulk temperatures in gear transmissions. In: Proceedings of the 7th round-table discussion on marine reduction gears, stat-laval, Finspong, Sweden, pp 3–25 and 26–32

    Google Scholar 

  • Blok H (1974) Thermal instability of flow in elasto-hydrodynamic films as a cause for cavitation, collapse and scuffing. In: Proceedings of the first leeds-lion symposium. University of Leeds, England, pp 189–197

    Google Scholar 

  • Bodensieck EJ (1965, September) Specific film thickness—an index of gear tooth surface deterioration. Paper presented at 1965 Aerospace Gear Communication Technical Division Meeting, AGMA (Denver, CO)

    Google Scholar 

  • Bodensieck EJ (1967) How film thickness affects gear-tooth scoring. Power Transm 23:53–56

    Google Scholar 

  • Boley BA, Weiner JH (1997) Theory of thermal stresses. Dover Publications Inc., Mineola

    MATH  Google Scholar 

  • Borsoff VN (1959) On the Mechanism Of Gear Lubrication. ASME Trans J Basic Eng 81(80D):79–93

    Article  Google Scholar 

  • Borsoff VN, Godet M (1963) A scoring factor for gears. ASLE Trans 6:147–153

    Article  Google Scholar 

  • Bowman WF, Stachowiak GW (1996) A review of scuffing models. Tribol Lett 2(2):113–131

    Article  Google Scholar 

  • Broenink JF (1999) Introduction to physical systems modelling with bond graphs. University of Twente, Department of EE, Control Laboratory, pp 1–31

    Google Scholar 

  • Bruce RW (ed) (2012) CRC handbook of lubrication (theory and practice of tribology)—vol II theory & design, 2nd edn. CRC Press, Taylor & Frencis Group, Boca Raton, Florida

    Google Scholar 

  • Cameron A (1952) Hydrodynamic theory in gear lubrication. J Inst Petrol 38:614

    Google Scholar 

  • Cameron A (1954) Surface failure in gears. J Inst Petrol 40:191

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Conrado E, Höhn B-R, Michaelis K, Klein M (2007) Influence of oil supply on the scuffing load-carrying capacity of hypoid gears. J Eng Tribol 221(8):851–858

    Google Scholar 

  • Cook RD (1981) Concepts and applications of finite element analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Czichos H (1974) Failure criteria in thin film lubrication-the concept of a failure surface. Tribology 7(1):14–20

    Article  Google Scholar 

  • Czichos H (1976) Failure criteria in thin film lubrication, investigation of the different stages of film failure. Wear 36(1):13–17

    Article  Google Scholar 

  • Czichos H, Habig K-H (eds) (2010) Tribologie-Handbuch: Tribometrie, Tribomaterialen, Tribotechnik. Vieweg + Teubner Verlag, Springer Fachmedien Wiesbaden GmbH

    Google Scholar 

  • Dowson D, Higginson GR (1966) Elasto-hydrodynamic lubrication. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Dowson D, Toyoda S (1978, September) A central film thickness formula for elastohydrodynamic line contacts. In: Proceedings of leeds-lyon symposium on tribology, pp 19–22, Paper no. 11

    Google Scholar 

  • Dyson A (1975a) Scuffing—a review: Part 1. Tribol Int 8(2):77–87

    Google Scholar 

  • Dyson A (1975b) Scuffing—a review: Part 2. Tribol Int 8(3):117–122

    Google Scholar 

  • Dyson A (1976) Thermal stability of models of rough elastohydrodynamic systems. J Mech Eng Sci Inst Mech Eng

    Google Scholar 

  • Ertel AM (1939) Hydrodynamic lubrication based on new principles. Akad Nauk SSSR Prikadnaya Mathematica i Mekhanika 3:41–52

    Google Scholar 

  • Ertel AM (1945) Hydrodynamic lubrication analysis of a contact of curvilinear surfaces, Dissertation on Proceedings of CNIITMASH, Moscow, pp 1–64

    Google Scholar 

  • Giovannozzi R (1965) Costruzione di Macchine, vol II, 4th edn. Casa Editrice Prof. Riccardo Pàtron, Bologna

    Google Scholar 

  • Godet M (1963a) La théorie des deux lignes, la lubrication des engrenages. C R Acad Sci 257:48–51

    Google Scholar 

  • Godet M (1963b) Reflexion théoriques et expérimentales à propos de la recherche sir la lubrication des engrenages dans les applications de la science à l’industrie, La Machine-Outil Français: 1ère partie, n. 193

    Google Scholar 

  • Godet M (1964a) La théorie des deux lignes. Éssais des lubricants. C R Acad Sci 258:71–74

    Google Scholar 

  • Godet M (1964b) Reflexion théoriques et expérimentales à propos de la recherche sir la lubrication des engrenages dans les applications de la science à l’industrie, La Machine-Outil Français: 2ème partie, n. 194

    Google Scholar 

  • Godet M (1965) Reflexion théoriques et expérimentales à propos de la recherche sir la lubrication des engrenages dans les applications de la science à l’industrie, La Machine-Outil Français: 3ème partie, n. 195

    Google Scholar 

  • Goldfarb V, Barmina N (eds) (2016) Theory and practice of gearing and transmissions, in honor of Professor Feydor L. Springer International Publishing Switzerland, Litvin

    Google Scholar 

  • Greenwood JA (1972) An extension of the Grubin theory of elastohydrodynamic lubrication. J Phys D Appl Phys 5(12):2195–2211

    Article  Google Scholar 

  • Grubin AN, Vinogradova IE (1949) Investigation of the contact of machine components. In: Ketova KF (ed) Central Scientific Research Institute for Technology and Mechanical Engineering (TsNIIMASH), Book no. 30, Moscow, (D.S.I.R. Translation no. 337)

    Google Scholar 

  • Gupta K, Jain NK, Laubscher R (2017) Advanced gear manufacturing and finishing: classical and modern processes. Academic Press, Elsevier Inc., London

    Google Scholar 

  • Habchi W (2014) A numerical model for the solution of thermal elastohydrodynamic lubrication in coated circular contacts. Tribol Int 73:57–68

    Article  Google Scholar 

  • Henriot G (1979) Traité théorique et pratique des engrenages, vol 1, 6th edn. Bordas, Paris

    Google Scholar 

  • Hirani H (2016) Fundamentals of engineering tribology with applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Höhn B-R, Michaelis K, Eberspächer C, Schlenk L (1999) A scuffing load capacity test with the FZG gear test rig for gear lubricants with high EP performance. Tribotest J 5(4):383–390

    Article  Google Scholar 

  • Höhn B-R, Michaelis K, Otto HP (2011) Flank load carrying capacity and power loss reduction by minimized lubrication. Gear Technol 53–62

    Google Scholar 

  • Höhn B-R, Oster P, Michaelis K (2004) Influence of lubricant on gear failures—test methods and application to gearboxes in practice. Tribotest J 11(1)

    Google Scholar 

  • Höhn B-R, Oster P, Michaelis K (1998) New test methods for the evaluation of wear, scuffing and pitting capacity of gear lubricants. AGMA Technical Paper 98FTM8

    Google Scholar 

  • Horng JH (1998) True friction power intensity and scuffing in sliding contact. J Tribol 120(4):829–834

    Article  Google Scholar 

  • Incropera FP, DeWitt DP, Bergmann TL, Lavine AS (2006) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York

    Google Scholar 

  • ISO/TS 6336-20: 2017 (E), Calculation of load capacity of spur and helical gears-Part 20: calculation of scuffing load capacity (also applicable to bevel and hypoid gears)—flash temperature method

    Google Scholar 

  • Jelaska D (2012) Gears and gear drives. Wiley, U.K.

    Book  Google Scholar 

  • Juvinall RC, Marshek KM (2012) Fundamentals of machine component design, 5th edn. Wiley, New York

    Google Scholar 

  • Kovalchenko A, Ajayi O, Erdemir A, Fenske G (2011) Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9–10):1719–1725

    Article  Google Scholar 

  • Kudish II (2013) Elastohydrodynamic lubrication for line and point contacts—asymptotic and numerical approaches. CRC Press, Taylor & Sons Group, Boca Raton, Florida

    Book  MATH  Google Scholar 

  • Lacey PI (1988) Development of a Gear Oil Scuff Test (GOST) procedure to predict adhesive wear resistance of turbine engine lubricants. Tribol Trans 41(3):307–316

    Article  Google Scholar 

  • Lipson C (1967) Wear considerations in design. Prentice-Hall Inc., Englewood Cliffs, N. J.

    Book  Google Scholar 

  • Ludema KC (1984) A review of scuffing and running-in of lubricated surfaces, with asperities and oxides in perspective. Wear 100:315–331

    Article  Google Scholar 

  • Mang T, Bobzin K, Bartels T (2011) Industrial tribology: tribosystems, friction, wear and surface engineering, lubrication. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Manin L, Play D (1999) Thermal behavior of power gearing transmission, numerical prediction, and influence of design parameters. ASME J Tribol 121:693–702

    Article  Google Scholar 

  • Martins R, Cardoso N, Scabra J (2008) Influence of lubricant type in gear scuffing. Ind Lubr Tribol 60(6):299–308

    Article  Google Scholar 

  • Michalczewski R, Kalbarczyk M, Michalak M, Piekoszewski W, Szczerek M, Tuszynski W, Wulczynski J (2013) New scuffing test methods for the determination of the scuffing resistance of coated gears. Chapter 6 in tribology-fundamentals and advancements. Intech Open Science, pp 185–215

    Google Scholar 

  • Michalczewski R, Piekoszewski W, Szczerek M, Tuszynski W (2009) Scuffing resistance of DLC-coated gears lubricated with ecological oil. Est J Eng 15(4):367–373

    Article  Google Scholar 

  • Miltenović AV, Kuzmanović SB, Miltenović VD, Tica MM, Rachov MJ (2012) Thermal stability of crossed helical gears with wheels made from sintered steel. Therm Sci 2(Suppl. 2):S607–S619

    Google Scholar 

  • Morales-Espejel GE, Wemekamp AW (2008) Ertel-Grubin methods in elastohydrodynamic lubrication—a review. In: Proc Inst Mech Eng Part J J Eng Tribol 222:15–34

    Article  Google Scholar 

  • Naunheimer H, Bertsche B, Ryborz J, Novak W (2011) Automotive transmissions: fundamentals, selection, design and application, 2nd edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Naveros I, Ghiaus C, Ordoñez J, Ruiz DP (2016) Thermal networks considering graph theory and thermodynamics. In: Proceedings of the 12th international conference on heat transfer, fluid mechanics and thermodynamics, Costa del Sol, Spain, 11–13 July, pp 1568–1573

    Google Scholar 

  • Niemann G, Winter H (1983) Maschinen-Elemente, Band II: Getriebe allgemein, Zahradgetriebe-Grundlagen, Stirnradgetriebe. Springer, Berlin, Heidelberg

    Google Scholar 

  • Peterson MB, Winer WO (eds) (1980) Wear control handbook. The American Society of Mechanical Engineers, New York

    Google Scholar 

  • Pirro DM, Webster M, Daschner E (2016) Lubrication fundamentals, 3rd edn revised and expanded. CRC Press, Taylor & Frencis Group, New York

    Google Scholar 

  • Polder JW (1987a) Influence of geometrical parameters on the gear scuffing criterion—Part I. Gear Technol 28–34

    Google Scholar 

  • Polder JW (1987b) Influence of geometrical parameters on the gear scuffing criterion—Part II. Gear Technol 19–27

    Google Scholar 

  • Polder JW (1958) Relation between the PVT-equation and the flash temperature equation. In: Proceedings of international conference on gears, London, p 474

    Google Scholar 

  • Rabinowicz E (1980) Wear coefficients- metals. In: Peterson MB, Winter WO (eds) Section IV of wear control handbook. The American Society of Mechanical Engineers, New York

    Google Scholar 

  • Radzevich SP (2016) Dudley’s handbook of practical gear design and manufacture, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, Florida

    Book  Google Scholar 

  • Salomon G. (1976) Failure criteria in thin film lubrication—the irg program, Wear, 36 (1), January, pp. 1–6

    Google Scholar 

  • Schipper DJ, de Gee AWJ (1995) On the transitions in the lubrication of concentrated contacts. J Tribol 117(2):250–254

    Article  Google Scholar 

  • Scott D (ed) (1979) Wear: treatise on materials science and technology, vol 13. Academic Press, New York

    Google Scholar 

  • Shipley EE (1967) Gear failure: how to recognize them, what causes them, how to avoid them. Mach Des

    Google Scholar 

  • Snidle RW, Evans HP, Alanou MP, Holmes MJA (2003) Understanding scuffing and micropitting of gears. In: Proceedings of the meeting on the control and reduction of wear in military platforms, Williamsburg, USA, 7–9 June and ADM 201869, RTO-MP-AVT-109, pp 14/1–14/18

    Google Scholar 

  • Stachowiak GW, Batchelor AW (2014) Engineering tribology, 4th edn. Elsevier, Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Tabor BJ (1981) Failure of thin film lubrication—an expedient for the characterization of lubricants. ASME J Lubr Technol 103(4):497–501

    Article  Google Scholar 

  • Tallian TE (1992) The failure Atlas for Hertz contact machine elements. Mech Eng 114(3):66

    Google Scholar 

  • Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 25(5):1516–1523

    Article  Google Scholar 

  • von Scherr-Thoss HC (1965) Die Entwicklung der Zahrad-Technik: Zahnformen und Tragfähigkeitsberechnung. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Vullo V (2014) Circular cylinders and pressure vessels: stress analysis and design. Springer International Publishing Switzerland, Cham, Heidelber

    Book  Google Scholar 

  • Wink CH (2012) Predicted scuffing risk to spur and helical gears in commercial vehicle transmission. Gear Technol 82–86

    Google Scholar 

  • Winter H, Oster P (1981) Beanspruchung der Zahnflanken under EHD-Bedingungen. Konstruktion 33:421–434

    Google Scholar 

  • Wydler R (1958) Application of non-dimensional parameters in gear tooth design. The Institution of Mechanical Engineers, Proceedings of the International Conference on Gearing, London, 23rd–25th September, Paper 4, pp 62–71

    Google Scholar 

  • Xue J, Li W, Qin C (2014) The scuffing load capacity of involute spur gear systems based on dynamic loads and transient thermal elastohydrodynamic lubrication. Tribol Int 79:74–83

    Article  Google Scholar 

  • Zudans Z, Yen TC, Steigelmann WH (1965) Thermal stress techniques in nuclear industry, The Franklin Institute Research Laboratories. American Elsevier Publishing Company, Inc, Philadelphia, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Vullo .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vullo, V. (2020). Scuffing Load Carrying Capacity of Cylindrical, Bevel and Hypoid Gears: Flash Temperature Method. In: Gears. Springer Series in Solid and Structural Mechanics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-38632-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38632-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38631-3

  • Online ISBN: 978-3-030-38632-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics