Skip to main content
Book cover

Gears pp 539–583Cite as

Tooth Flank Breakage Load Carrying Capacity of Spur and Helical Gears

  • Chapter
  • First Online:
  • 1177 Accesses

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 11))

Abstract

In this chapter, a general survey is first done on the tooth fatigue breakage of spur and helical gears, which can manifest itself in the form of tooth flank fatigue fracture (TFF) or tooth interior fatigue fracture (TIFF). The mechanics that trigger these two types of tooth fatigue breakage as well as the characteristics that distinguish one type of damage from the other are described. The fundamentals on the TIFF and TFF calculation methods developed so far are then briefly recalled. Attention is then focused mainly on the fatigue crack initiation criterion, on a refined TFF-risk assessment model as well as on a practical-oriented TFF calculation approach. Some insights on the multiaxial stress state that may originate TIFF and TFF crack initiation as well as the weakest link theory and classical multiaxial criteria are described, focusing attention on a general fatigue criterion for multiaxial stress to be included in the framework of the shear stress intensity hypothesis (SIH). Finally, the procedure for calculating the tooth flank fracture load capacity of cylindrical spur and helical case-carburized gears with external teeth in accordance with the ISO standards is described, highlighting when deemed necessary how the formulae used by the same ISO are rooted in the theoretical and experimental bases previously discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al BC, Langlois P (2015) Analysis of tooth interior fatigue fracture using boundary conditions from an efficient and accurate loaded tooth contact analysis. In: British Gears Association (BGA) Gears 2015 Technical Awareness Seminar, 12th of November 2015, Nottingham, U.K. (also Gear Solutions, Feb. 2016)

    Google Scholar 

  • Al BC, Patel R, Langlois P (2016) Finite element analysis of tooth flank fracture using boundary conditions from LTCA. In: CTI Symposium USA, Novi, MI, 11–12 May 2016

    Google Scholar 

  • Al BC, Patel R, Langlois P (2017) Comparison of tooth interior fatigue fracture load capacity to standardized gear failure models. Gear Solutions, pp 47–57

    Google Scholar 

  • Batdorf SB (1977) Some approximate treatments of fracture statistics for polyaxial tension. Int J Fract 13:5–11

    Article  Google Scholar 

  • Batdorf SB, Crose JG (1974) Statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses. J Appl Mech 41:459–464

    Article  Google Scholar 

  • Batdorf SB, Heinisch HL (1978) Weakest link theory reformulated for arbitrary fracture criterion. J Am Ceram Soc 61:355–358

    Article  Google Scholar 

  • Beermann S, Kissling U (2015) Tooth flank fracture—a critical failure mode. Influence of Macro and Micro Geometry. In: KISSsoft User Conference India

    Google Scholar 

  • Belajev NM (1917) Bulletin of Institution Engineers of Ways and Communications, St. Petersburg

    Google Scholar 

  • Belajev NM (1924) Local stresses in compression of elastic bodies, in memoirs on theory of structures, St. Petersburg

    Google Scholar 

  • Boiadjiev I, Witzig J, Tobie T, Stahl K (2014) Tooth flank fracture-basic principles and calculation model for a sub-surface-initiated fatigue mode of case-hardened gears. In: International Gear Conference, Lyon, France. Also Gear Technology, 2015 26–28 August 2014

    Google Scholar 

  • Ding Y, Rieger N (2003) Spalling formation mechanism for gears. Wear 254(12):1307–1317

    Article  Google Scholar 

  • Elkholy A (1983) Case depth requirements in carburized gears. Wear 88:S233–S244

    Article  Google Scholar 

  • Evans AG (1978) A general approach for the statistical analysis of multiaxial fracture. J Am Ceram Soc 61:302–308

    Article  Google Scholar 

  • Fernandes PJL, McDuling C (1997) Surface contact fatigue failures in gears. Eng Fail Anal 4(2):99–107

    Article  Google Scholar 

  • Findley WN (1959) A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Indus 301–306

    Article  Google Scholar 

  • Föppl L, Föppl A (1947) Drang und Zwang, Band III—Eine höhere Festigkeitslehre für Ingenieure, Leibnitz Verlag, München

    Google Scholar 

  • Ghribi D, Octrue M (2014) Some theoretical and simulation results on the study of the tooth flank breakage in cylindrical gears. In: International Gear Conference 2014, Lyon, France, 26–28 August 2014

    Google Scholar 

  • Häfele P, Dietmann H (1994) Weiterentwicklung der Modifizierten Oktaederschubspannungshypothese (MOSH). Konstruktion 46:52–58

    Google Scholar 

  • Hein M, Tobie T, Stahl K (2017) Parameter study on the calculated risk of tooth flank fracture of case-hardened gears. In: Bulletin of the JSME, Journal of Advanced Mechanical of Design, Systems, and Manufacturing, II, (6)

    Google Scholar 

  • Heindenreich R, Zenner H, Richter I (1983) Dauerschwingfestigkeit bei mehrachsiger Beanspruchung, Forschungshefte FKM, Heft 105

    Google Scholar 

  • Henchy H (1924) Zur Theorie plastischen Deformationen und hierdurch in Material hervorgerufenen Nebenspannungen. In: Proceedings 1st International Congress for Applied Mechanics, Deft, pp 312–317

    Google Scholar 

  • Hertter T (2003) Rechnirischer Festigkeitsnachweis der Ermüdungstragfähigkeit vergüteter und einsatzgehärteter Zahnräder. Ph. D. thesis, Technical University of Munich

    Google Scholar 

  • Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Höhn BR, Oster P, Hertter T (2010) A calculation Model for rating the gear load capacity based on local stresses and local properties of the gear material. In: International Conference on Gears, Garching, Germany, VDI

    Google Scholar 

  • Huber MT (1904) A contribution to fundamentals of the strength of materials. Czasopismo Tow. Technicze Krakow 22:81 (in Polish)

    Google Scholar 

  • ISO 6336-5:2016 Calculation of load capacity of spur and helical gears—Part 5: Strength and quality of materials

    Google Scholar 

  • ISO/TR 15144-1:2014 Calculation of micropitting load capacity of cylindrical spur and helical gears—Part 1: Introduction and basic principles

    Google Scholar 

  • ISO/TS 6336-22:2018 Calculation of load capacity of spur and helical gears—Part 22: Calculation of micropitting load capacity

    Google Scholar 

  • ISO/TS 6336-4:2019 Calculation of load capacity of spur and helical gears—Part 4: Calculation of tooth flank fracture load capacity

    Google Scholar 

  • Johnson KL (1985) Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Klein M, Höhn BR, Michaelis K, Annast R (2011) Theoretical and experimental investigations about flank breakage in bevel gears. Indus Lubrication Tribol 63(1):5–10

    Article  Google Scholar 

  • Lamon J (1988) Statistical approaches to failure for ceramic reliability assessment. J Am Ceram Soc 71:106–112

    Article  Google Scholar 

  • Lang OR (1979) The dimensioning of complex steel members in the range of endurange strength and fatigue life. Zeitschrift fuer Werkstofftechnik 10:24–29

    Article  Google Scholar 

  • Lang OR (1988) Berechnung und Auslegung induktiv gehärteter Bauteile, Berichtsband zur AWT-Tagung, Induktives Randschichthärten, Darmstadt

    Google Scholar 

  • Langlois P, Al BC, Harris O (2016) Hybrid hertzian and FE-based helical gear-loaded tooth contact analysis and comparison with FE. Gear Technology, pp 54–63

    Google Scholar 

  • Liu J (1999) Weakest Link Theory and Multiaxial Criteria. In: Macha E, Bedkowki W, Lagoda T (eds) Multiaxial fatigue and fracture. Elsevier, New York, pp 55–68

    Google Scholar 

  • Liu J, Zenner H (1993) Berechnung der Dauerschwingfestigkeit bei mehrachsiger Beanspruchung, Mat.-Wiss. und Werkstofftech., 24, part 1: pp 240–249; part 2: pp 296–303 and part3: pp 339–347

    Google Scholar 

  • MackAldener M (2001) Tooth interior fatigue fracture and robustness of gears. Doctoral thesis, KTH Stockholm

    Google Scholar 

  • MackAldener M, Olsson M (2000a) Interior fatigue fracture of gear teeth. Fatigue Fract Eng Mater Struct 23(4):283–292

    Article  Google Scholar 

  • MackAldener M, Olsson M (2000b) Design against tooth interior fatigue fracture. Gear Technolog, pp 18–24

    Google Scholar 

  • MackAldener M, Olsson M (2001) Tooth interior fatigue fracture. Int J Fatigue 23:329–340

    Article  Google Scholar 

  • MackAldener M, Olsson M (2002) Analysis of crack propagation during tooth interior fatigue fracture. Eng Fracture Mech 69(18):2147–2162

    Article  Google Scholar 

  • Martens H, Hahn M (1993) Vergleichspannungshypothese zur Schwingfestigkeit bei Zweiachsiger Beanspruchung ohne und mit Phasenverschiebungen, Konstruktion, 45, pp 196–202

    Google Scholar 

  • Maxwell JC (1856) Letter to Lord Kelvin, Dec. 18 (pertinent portion of letter quoted by Nadai, Theory of flow and Fracture of solids, Vol II, p 43)

    Google Scholar 

  • Mises RV (1913) Mechanik der festen Körper im Plastisch-detormablem Zustand. Göttinger Nachrichten, Akad. Wiss, Math-Physik., Kl., pp 582–592

    Google Scholar 

  • Munz D, Fett T (1989) Mechanisches Verhalten Keramischer Werkstoffe. Springer, Berlin

    Book  Google Scholar 

  • Nadai A (1933) Theories of strength. ASME J Appl Mech 1(3):111–129

    Google Scholar 

  • Nadai A (1937) Plastic behavior of metals in the strain hardening range. J Appl Phys 8:205–213

    Article  Google Scholar 

  • Nadai A (1950) Theory of flow and fracture of solids, vol I. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Nadai A (1963) Theory of flow and fracture of solids, vol II. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Nøkleby JO (1981) Fatigue under multiaxial stress conditions. Report MD-81001, Div. Masch. Elem., The Norwey Institute of Thecnology, Trondheim/Norwegen

    Google Scholar 

  • Novozhilov VV (1958) Theory of elasticity. Sudpromgiz (in Russian, Teoriya uprugosti), Moscow

    Google Scholar 

  • Octrue M, Ghribi D, Sainsot P (2018) A contribution to study the Theory Flank Fracture (TFF) in cylindrical gears. Procedia Eng 213:215–226

    Article  Google Scholar 

  • Oster P (1982) Beanspruchung der Zahnflanken unter Bedingungen der Elastohydrodynamik. Doctoral thesis, Technical Univesity of Munich

    Google Scholar 

  • Papadopoulos IV (1994) A new criterion of fatigue strength for out-of-phase bending and torsion of hard metal. Int J Fatigue 16:377–384

    Article  Google Scholar 

  • Paul P (1968) Generalized pyramidal fracture and yield criteria. Int J Solids Struct 4:175–196

    Article  Google Scholar 

  • Pedersen R, Rice RL (1961) Case crushing of carburized and hardened gears. SAE Technical Paper 610031 and SAE Transactions, SAE Transactions, Warrendale, PA, pp S360–370

    Google Scholar 

  • Ristivojević M, Lazovic T, Venci A (2019) Studying the load carrying capacity of spur gear tooth flanks. Mech Mach Theory 59:125–137

    Article  Google Scholar 

  • Sandberg E (1981) A calculation method for subsurface fatigue. In: International symposium in gearing and power transmissions, Tokyo, I, pp S429–434

    Google Scholar 

  • Shames IH, Cozzarelli FA (1997) Elastic and inelastic stress analysis. Revised Printing, Taylor & Francis Ltd., Philadelphia

    Book  Google Scholar 

  • Sharma VK, Breen DH, Walter GH (1977) An analytical approach for establishing case depth requirements in carburized and hardened gears. In: Transaction of ASME for presentation at the design engineering technical conference, Chicago, IL, pp 26–30

    Google Scholar 

  • Simbürger A (1975) Festigkeitsverhalten zäher Werkstoffe bei einer mehrachsigen phasenverschobenen Schwingbeanspruchung mit körperfesten und veränderlichen Hauptspannungsrichtungen, Diss., TH Darmstadt

    Google Scholar 

  • Sonsino CM (2007) Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 29(12):2246–2258

    Article  Google Scholar 

  • Sponzilli JT, Remus GE, Clarke TM, Sawdo EJ (2000) Steel quality requirements for heavy duty off-highway gearing, SAE Technical Paper 2000-01-2566

    Google Scholar 

  • Stahl K, Hein M, Tobie T (2018) Calculation of tooth flank fracture load capacity. Gear Solution, Sri Lanka

    Google Scholar 

  • Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tallian TE (1992) Failure Atlas for Hertz contact machine elements. ASME Press, New York

    Google Scholar 

  • Thomas J (1997) Flankentragfähigkeit and Laufverhalten von hart-feinbearbeiteten Kegelrädern. Doctoral thesis, Technical University of Munich

    Google Scholar 

  • Timoshenko SP (1953) History of strength of materials. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  • Timoshenko SP, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill Book Company Inc, New York

    MATH  Google Scholar 

  • Tobe T, Kato M, Inoe K, Takatsu N, Morita I (1986) Bending strength of carburized C42OH spur gear teeth. ISME, pp 273–280

    Google Scholar 

  • Tobie T, Höhn B-R, Stahl K (2013) Tooth flank breakage-influences on subsurface initiated fatigue failures of case-hardened gears. In: Proceedings of the ASME 2013 power transmission and gearing conference, Portland, OR, 4–7 August 2014

    Google Scholar 

  • Townsend DP (1992) Gear handbook. McGraw-Hill Book Company inc., New York

    Google Scholar 

  • Vullo V (2014) Circular cylinders and pressure vessels: stress analysis and design. Springer International Publishing Switzerland, Cham-Heidelberg

    Book  Google Scholar 

  • Weibull W (1939) A statistical theory of strength of materials, Ingeniörs Vatenskaps Akademiens Handlinger, Nr. 151, Generalstabens Litografiska Anstalts Förlag, Stockholm

    Google Scholar 

  • Witzig J (2012) Flankenbruch Eine Grenze der Zahnradtragfähigkeit in der Werkstofftiefe. Ph.D. thesis, Technical University of Munich

    Google Scholar 

  • Yu M (2002) Advances in strength theories for materials under complex stress state in the 20th Century. ASME Appl Mech Rev 55(3):169–218

    Article  Google Scholar 

  • Zenner H, Richter I (1977) Eine Festigkeitshypothese für die Dauerfestigkeit bei beliebigen Beanspruchungskombinationen. Konstruktion 29:11–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Vullo .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vullo, V. (2020). Tooth Flank Breakage Load Carrying Capacity of Spur and Helical Gears. In: Gears. Springer Series in Solid and Structural Mechanics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-38632-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38632-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38631-3

  • Online ISBN: 978-3-030-38632-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics