Skip to main content

Migraine

  • Chapter
  • First Online:
  • 690 Accesses

Abstract

Migraine is one of the most common and disabling neurologic diseases worldwide. An increasing recognition of migraine has led to a growing interest in understanding its pathophysiology and developing new treatments. It is now widely accepted that migraine is not simply a disease related to pain occurring intermittently, but a more complex neurological condition. The migraine attack consists of different phases which, starting from the premonitory phase, give way to the pain phase and terminate in a postdromal phase. An aura phase is also present in around one-third of migraine patients. From the formerly popular vascular theory, which described migraine as a vascular disorder, the field has now moved to the neuronal theories involving either the peripheral or central nervous system, or both. There is ample evidence suggesting that in predisposed migraine patients the activation of different cortical, subcortical, and brainstem regions and the subsequent release of key neuropeptides can contribute to the onset of the attack. A better understanding of migraine biology has paved the way for the development of new migraine-specific and mechanism-based acute and preventive treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.

    Article  Google Scholar 

  2. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

    Article  Google Scholar 

  3. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97:553–622.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68:343–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16:76–87.

    Article  CAS  PubMed  Google Scholar 

  6. Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.

    Google Scholar 

  7. May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12:455–64.

    Article  CAS  PubMed  Google Scholar 

  8. Lipton RB. Tracing transformation: chronic migraine classification, progression, and epidemiology. Neurology. 2009;72:S3–7.

    Article  PubMed  Google Scholar 

  9. Buse DC, Manack A, Serrano D, Turkel C, Lipton RB. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry. 2010;81:428–32.

    Article  CAS  PubMed  Google Scholar 

  10. Ray BS, Wolff HG. Experimental studies on headache. Pain-sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.

    Article  Google Scholar 

  11. Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):595–609.

    Article  PubMed  Google Scholar 

  12. Amin FM, Asghar MS, Hougaard A, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12:454–61.

    Article  PubMed  Google Scholar 

  13. Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther. 2017;172:151–70.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573–94.

    Article  PubMed  Google Scholar 

  15. Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1:1036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amin FM, Hougaard A, Schytz HW, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137:779–94.

    Article  PubMed  Google Scholar 

  17. Charles A. The pathophysiology of migraine: implications for clinical management. Lancet Neurol. 2018;17:174–82.

    Article  CAS  PubMed  Google Scholar 

  18. Moskowitz MA. The neurobiology of vascular head pain. Ann Neurol. 1984;16:157–68.

    Article  CAS  PubMed  Google Scholar 

  19. Roon KI, Olesen J, Diener HC, et al. No acute antimigraine efficacy of CP-122,288, a highly potent inhibitor of neurogenic inflammation: results of two randomized, double-blind, placebo-controlled clinical trials. Ann Neurol. 2000;47:238–41.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein DJ, Offen WW, Klein EG, et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia. 2001;21:102–6.

    Article  CAS  PubMed  Google Scholar 

  21. Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol. 2017;264:2031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maniyar FH, Sprenger T, Schankin C, Goadsby PJ. The origin of nausea in migraine-a PET study. J Headache Pain. 2014;15:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139:1987–93.

    Article  PubMed  Google Scholar 

  24. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–60.

    Article  CAS  PubMed  Google Scholar 

  25. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137:232–41.

    Article  PubMed  Google Scholar 

  26. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47:1418–26.

    PubMed  Google Scholar 

  27. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia. 2008;28:856–62.

    Article  CAS  PubMed  Google Scholar 

  28. Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. 2017;88:2011–6.

    Article  PubMed  Google Scholar 

  29. Lerebours F, Boulanouar K, Barege M, et al. Functional connectivity of hypothalamus in chronic migraine with medication overuse. Cephalalgia. 2019;39:892–9.

    Article  PubMed  Google Scholar 

  30. Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. 2019;10:606.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci. 2011;31:14204–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Tommaso M, Ambrosini A, Brighina F, et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol. 2014;10:144–55.

    Article  PubMed  Google Scholar 

  33. Coppola G, Di Renzo A, Tinelli E, et al. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology. 2016;87:2154–60.

    Article  PubMed  Google Scholar 

  34. Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62:1270–5.

    Article  PubMed  Google Scholar 

  35. Coppola G, Tinelli E, Lepre C, et al. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol. 2013;21:287.e13.

    PubMed  Google Scholar 

  36. Magon S, May A, Stankewitz A, et al. Morphological abnormalities of thalamic subnuclei in migraine: a multicenter MRI study at 3 tesla. J Neurosci. 2015;35:13800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Messina R, Rocca MA, Colombo B, et al. White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia. 2015;35:1278.

    Article  PubMed  Google Scholar 

  38. Messina R, Filippi M, Goadsby PJ. Recent advances in headache neuroimaging. Curr Opin Neurol. 2018;31:379–85.

    Article  PubMed  Google Scholar 

  39. Tfelt-Hansen PC, Koehler PJ. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache. 2011;51:752–78.

    Article  PubMed  Google Scholar 

  40. Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98:4687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arngrim N, Hougaard A, Ahmadi K, et al. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol. 2017;82:925–39.

    Article  PubMed  Google Scholar 

  42. Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48:856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freilinger T, Anttila V, de Vries B, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44:777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maniyar FH, Sprenger T, Monteith T, Schankin CJ, Goadsby PJ. The premonitory phase of migraine—what can we learn from it? Headache. 2015;55:609–20.

    Article  PubMed  Google Scholar 

  45. Bose P, Goadsby PJ. The migraine postdrome. Curr Opin Neurol. 2016;29:299–301.

    Article  PubMed  Google Scholar 

  46. Charles A. The evolution of a migraine attack—a review of recent evidence. Headache. 2013;53:413–9.

    Article  PubMed  Google Scholar 

  47. Lai TH, Fuh JL, Wang SJ. Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry. 2009;80:1116–9.

    Article  PubMed  Google Scholar 

  48. Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol. 2018;14:699–710.

    Article  PubMed  Google Scholar 

  49. Giffin NJ, Ruggiero L, Lipton RB, et al. Premonitory symptoms in migraine: an electronic diary study. Neurology. 2003;60:935–40.

    Article  CAS  PubMed  Google Scholar 

  50. Ong JJY, De Felice M. Migraine treatment: current acute medications and their potential mechanisms of action. Neurotherapeutics. 2018;15:274–90.

    Article  CAS  PubMed  Google Scholar 

  51. Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27:394–402.

    Article  CAS  PubMed  Google Scholar 

  52. Schulte LH, Jurgens TP, May A. Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? J Headache Pain. 2015;16:14.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87:309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schankin CJ, Viana M, Goadsby PJ. Persistent and repetitive visual disturbances in migraine: a review. Headache. 2017;57:1–16.

    Article  PubMed  Google Scholar 

  55. Charles A. The migraine Aura. Continuum (Minneap Minn). 2018;24:1009–22.

    Google Scholar 

  56. Viana M, Sances G, Linde M, et al. Clinical features of migraine aura: results from a prospective diary-aided study. Cephalalgia. 2017;37:979–89.

    Article  PubMed  Google Scholar 

  57. Hansen JM, Baca SM, Vanvalkenburgh P, Charles A. Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain. 2013;136:3589–95.

    Article  PubMed  Google Scholar 

  58. Hansen JM, Goadsby PJ, Charles AC. Variability of clinical features in attacks of migraine with aura. Cephalalgia. 2016;36:216–24.

    Article  PubMed  Google Scholar 

  59. Goadsby PJ. Unique migraine subtypes, rare headache disorders, and other disturbances. Continuum (Minneap Minn). 2015;21:1032–40.

    Google Scholar 

  60. Sutherland HG, Griffiths LR. Genetics of migraine: insights into the molecular basis of migraine disorders. Headache. 2017;57:537–69.

    Article  PubMed  Google Scholar 

  61. Bigal ME, Lipton RB. Concepts and mechanisms of migraine chronification. Headache. 2008;48:7–15.

    Article  PubMed  Google Scholar 

  62. Su M, Yu S. Chronic migraine: a process of dysmodulation and sensitization. Mol Pain. 2018;14:174480691876769.

    Article  CAS  Google Scholar 

  63. Silberstein SD. Practice parameter: evidence-based guidelines for migraine headache (an evidence-based review): report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2000;55:754–62.

    Article  CAS  PubMed  Google Scholar 

  64. Sandrini G, Friberg L, Coppola G, et al. Neurophysiological tests and neuroimaging procedures in non-acute headache (2nd edition). Eur J Neurol. 2011;18:373–81.

    Article  CAS  PubMed  Google Scholar 

  65. Dodick DW. Pearls: headache. Semin Neurol. 2010;30:74–81.

    Article  PubMed  Google Scholar 

  66. Kruit MC, van Buchem MA, Hofman PA, et al. Migraine as a risk factor for subclinical brain lesions. JAMA. 2004;291:427–34.

    Article  CAS  PubMed  Google Scholar 

  67. Koppen H, Boele HJ, Palm-Meinders IH, et al. Cerebellar function and ischemic brain lesions in migraine patients from the general population. Cephalalgia. 2017;37:177–90.

    Article  PubMed  Google Scholar 

  68. Gaist D, Garde E, Blaabjerg M, et al. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study. Brain. 2016;139:2015–23.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Uggetti C, Squarza S, Longaretti F, et al. Migraine with aura and white matter lesions: an MRI study. Neurol Sci. 2017;38:11–3.

    Article  PubMed  Google Scholar 

  70. Rocca MA, Messina R, Colombo B, Falini A, Comi G, Filippi M. Structural brain MRI abnormalities in pediatric patients with migraine. J Neurol. 2014;261(2):350–7.

    Article  PubMed  Google Scholar 

  71. Tortorella P, Rocca MA, Colombo B, Annovazzi P, Comi G, Filippi M. Assessment of MRI abnormalities of the brainstem from patients with migraine and multiple sclerosis. J Neurol Sci. 2006;244:137–41.

    Article  PubMed  Google Scholar 

  72. Kruit MC, Launer LJ, Ferrari MD, van Buchem MA. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128:2068–77.

    Article  PubMed  Google Scholar 

  73. Hougaard A, Amin FM, Ashina M. Migraine and structural abnormalities in the brain. Curr Opin Neurol. 2014;27:309–14.

    Article  PubMed  Google Scholar 

  74. Honningsvag LM, Haberg AK, Hagen K, Kvistad KA, Stovner LJ, Linde M. White matter hyperintensities and headache: a population-based imaging study (HUNT MRI). Cephalalgia. 2018;38:1927–39.

    Article  PubMed  Google Scholar 

  75. Yalcin A, Ceylan M, Bayraktutan OF, Akkurt A. Episodic migraine and white matter hyperintensities: association of pain lateralization. Pain Med. 2018;19(10):2051–7.

    Article  PubMed  Google Scholar 

  76. Zhang Q, Datta R, Detre JA, Cucchiara B. White matter lesion burden in migraine with aura may be associated with reduced cerebral blood flow. Cephalalgia. 2017;37:517–24.

    Article  PubMed  Google Scholar 

  77. Lee MJ, Park BY, Cho S, Park H, Chung CS. Cerebrovascular reactivity as a determinant of deep white matter hyperintensities in migraine. Neurology. 2019;92:e342–50.

    Article  CAS  PubMed  Google Scholar 

  78. Colombo B, Dalla Libera D, Comi G. Brain white matter lesions in migraine: what’s the meaning? Neurol Sci. 2011;32(Suppl 1):S37–40.

    Article  PubMed  Google Scholar 

  79. Bashir A, Lipton RB, Ashina S, Ashina M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 2013;81:1260–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schwedt TJ, Demaerschalk BM, Dodick DW. Patent foramen ovale and migraine: a quantitative systematic review. Cephalalgia. 2008;28:531–40.

    Article  CAS  PubMed  Google Scholar 

  81. Dowson A, Mullen MJ, Peatfield R, et al. Migraine intervention with STARFlex technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation. 2008;117:1397–404.

    Article  PubMed  Google Scholar 

  82. Bhaskar S, Saeidi K, Borhani P, Amiri H. Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci. 2013;38:3540–51.

    Article  PubMed  Google Scholar 

  83. Candee MS, McCandless RT, Moore KR, Arrington CB, Minich LL, Bale JF Jr. White matter lesions in children and adolescents with migraine. Pediatr Neurol. 2013;49:393–6.

    Article  PubMed  Google Scholar 

  84. Hamedani AG, Rose KM, Peterlin BL, et al. Migraine and white matter hyperintensities: the ARIC MRI study. Neurology. 2013;81:1308–13.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mar S, Kelly JE, Isbell S, Aung WY, Lenox J, Prensky A. Prevalence of white matter lesions and stroke in children with migraine. Neurology. 2013;81:1387–91.

    Article  CAS  PubMed  Google Scholar 

  86. Absinta M, Rocca MA, Colombo B, et al. Patients with migraine do not have MRI-visible cortical lesions. J Neurol. 2012;259:2695–8.

    Article  PubMed  Google Scholar 

  87. Liu S, Kullnat J, Bourdette D, et al. Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult Scler. 2013;19:1101–5.

    Article  PubMed  Google Scholar 

  88. Lapucci C, Saitta L, Bommarito G, et al. How much do periventricular lesions assist in distinguishing migraine with aura from CIS? Neurology. 2019;92:e1739–44.

    Article  PubMed  Google Scholar 

  89. Lipton RB, Silberstein SD. Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache. 2015;55(Suppl 2):103–22; quiz 123-106.

    Article  PubMed  Google Scholar 

  90. American Headache Society. The American Headache Society Position Statement on integrating new migraine treatments into clinical practice. Headache. 2019;59:1–18.

    Google Scholar 

  91. Lipton RB, Fanning KM, Serrano D, Reed ML, Cady R, Buse DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology. 2015;84:688–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the american headache society evidence assessment of migraine pharmacotherapies. Headache. 2015;55:3–20.

    Article  PubMed  Google Scholar 

  93. Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9:285–98.

    Article  PubMed  Google Scholar 

  94. Dodick DW. Triptan nonresponder studies: implications for clinical practice. Headache. 2005;45:156–62.

    Article  PubMed  Google Scholar 

  95. Thorlund K, Mills EJ, Wu P, et al. Comparative efficacy of triptans for the abortive treatment of migraine: a multiple treatment comparison meta-analysis. Cephalalgia. 2014;34:258–67.

    Article  PubMed  Google Scholar 

  96. Sarchielli P, Pini LA, Zanchin G, et al. Clinical-biochemical correlates of migraine attacks in rizatriptan responders and non-responders. Cephalalgia. 2006;26:257–65.

    Article  CAS  PubMed  Google Scholar 

  97. Cady RK, Freitag FG, Mathew NT, et al. Allodynia-associated symptoms, pain intensity and time to treatment: predicting treatment response in acute migraine intervention. Headache. 2009;49:350–63.

    Article  PubMed  Google Scholar 

  98. Lipton RB, Munjal S, Buse DC, Fanning KM, Bennett A, Reed ML. Predicting inadequate response to acute migraine medication: results from the American migraine prevalence and prevention (AMPP) study. Headache. 2016;56:1635–48.

    Article  PubMed  Google Scholar 

  99. Humphrey PP, Goadsby PJ. The mode of action of sumatriptan is vascular? A debate. Cephalalgia. 1994;14:401–10; discussion 393.

    Article  CAS  PubMed  Google Scholar 

  100. Ahn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain. 2005;115:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56.

    Article  CAS  PubMed  Google Scholar 

  102. Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis. 2006;23:491–501.

    Article  CAS  PubMed  Google Scholar 

  103. Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology. 2015;84:2124–31.

    Article  PubMed  CAS  Google Scholar 

  104. Goadsby PJ. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain. 2016;139:2571–7.

    Article  PubMed  Google Scholar 

  105. Goadsby PJ, Wietecha LA, Dennehy EB, et al. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain. 2019;142:1894.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Moreno-Ajona D, Chan C, Villar-Martinez MD, Goadsby PJ. Targeting CGRP and 5-HT1F receptors for the acute therapy of migraine: a literature review. Headache. 2019;59(Suppl 2):3–19.

    Article  PubMed  Google Scholar 

  107. Messina R, Goadsby PJ. CGRP - a target for acute therapy in migraine: clinical data. Cephalalgia. 2019;39:420–7.

    Article  PubMed  Google Scholar 

  108. Tepper SJ. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: from translational research to treatment. Headache. 2018;58(Suppl 3):238–75.

    Article  PubMed  Google Scholar 

  109. Puledda F, Shields K. Non-pharmacological approaches for migraine. Neurotherapeutics. 2018;15:336–45.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lauritsen CG, Silberstein SD. Rationale for electrical parameter determination in external trigeminal nerve stimulation (eTNS) for migraine: a narrative review. Cephalalgia. 2019;39:750–60.

    Article  PubMed  Google Scholar 

  111. Silberstein SD. Preventive migraine treatment. Continuum (Minneap Minn). 2015;21:973–89.

    Google Scholar 

  112. Diener HC, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol. 2015;14:1010–22.

    Article  CAS  PubMed  Google Scholar 

  113. Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia. 2010;30:793–803.

    Article  CAS  PubMed  Google Scholar 

  114. Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30:804–14.

    Article  CAS  PubMed  Google Scholar 

  115. Dodick DW, Turkel CC, DeGryse RE, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50:921–36.

    Article  PubMed  Google Scholar 

  116. Ong JJY, Wei DY, Goadsby PJ. Recent advances in pharmacotherapy for migraine prevention: from pathophysiology to new drugs. Drugs. 2018;78:411–37.

    Article  CAS  PubMed  Google Scholar 

  117. Tepper SJ. CGRP and headache: a brief review. Neurol Sci. 2019;40:99–105.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, M., Rocca, M.A. (2020). Migraine. In: White Matter Diseases . Springer, Cham. https://doi.org/10.1007/978-3-030-38621-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38621-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38620-7

  • Online ISBN: 978-3-030-38621-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics