Skip to main content

Machine Learning Methods for Spatial and Temporal Parameter Estimation

  • Chapter
  • First Online:
Hyperspectral Image Analysis

Abstract

Monitoring vegetation with satellite remote sensing is of paramount relevance to understand the status and health of our planet. Accurate and constant monitoring of the biosphere has large societal, economical, and environmental implications, given the increasing demand of biofuels and food by the world population. The current democratization of machine learning, big data, and high processing capabilities allow us to take such endeavor in a decisive manner. This chapter proposes three novel machine learning approaches to exploit spatial, temporal, multi-sensor, and large-scale data characteristics. We show (1) the application of multi-output Gaussian processes for gap-filling time series of soil moisture retrievals from three spaceborne sensors; (2) a new kernel distribution regression model that exploits multiple observations and higher order relations to estimate county-level crop yield from time series of vegetation optical depth; and finally (3) we show the combination of radiative transfer models with random forests to estimate leaf area index, fraction of absorbed photosynthetically active radiation, fraction vegetation cover, and canopy water content at global scale from long-term time series of multispectral data exploiting the Google Earth Engine cloud processing capabilities. The approaches demonstrate that machine learning algorithms can ingest and process multi-sensor data and provide accurate estimates of key parameters for vegetation monitoring.

Á. Moreno-Martínez, M. Piles, J. Muñoz-Marí, M. Campos-Taberner, J. E. Adsuara, G. Camps-Valls—Authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camps-Valls G, Tuia D, Gómez-Chova L, Jiménez S, Malo J (eds) (2011) Remote Sens Image Process. Morgan & Claypool Publishers, LaPorte, CO, USA

    Google Scholar 

  2. Liang S (2004) Quantitative Remote Sensing of Land Surfaces. Wiley, New York

    Google Scholar 

  3. Liang S (2008) Advances in land remote sensing: system, modeling. inversion and applications. Springer, Germany

    Google Scholar 

  4. Lillesand TM, Kiefer RW, Chipman J (2008) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  5. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific Publishing Co., Ltd

    Book  MATH  Google Scholar 

  6. Baret F, Buis S (2008) Estimating canopy characteristics from remote sensing observations: review of methods and associated problems. In: Advances in land remote sensing: system, modeling, inversion and applications. Springer, Germany

    Google Scholar 

  7. Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. part1: principles of development and production. Remote Sens Environ 137(0):299–309

    Google Scholar 

  8. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838

    Google Scholar 

  9. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch, W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res: Biogeosci 116(G3)

    Google Scholar 

  10. Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlström A, Arneth A, Camps-Valls G, Ciais P, Friedlingstein P, Gans F, Ichii K, Jain AK, Kato E, Papale D, Poulter B, Raduly B, Rödenbeck C, Tramontana G, Viovy N, Wang YP, Weber U, Zaehle S, Zeng N (2017) Compensatory water effects link yearly global land \(CO{_2}\) sink changes to temperature. Nature 541(7638):516–520

    Article  Google Scholar 

  11. Tramontana G, Jung M, Camps-Valls G, Ichii K, Raduly B, Reichstein M, Schwalm CR, Arain MA, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D (2016) Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosci Discuss 2016:1–33. https://doi.org/10.5194/bg-2015-661

    Article  Google Scholar 

  12. Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Env 115(4):968–977

    Article  Google Scholar 

  13. Durbha SS, King RL, Younan NH (2007) Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Rem Sens Env 107(1–2):348–361

    Article  Google Scholar 

  14. Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu AX, Nemani RR (2006) Prediction of continental-scale evapotranspiration by combining MODIS and ameriflux data through support vector machine. IEEE Trans Geosci Remote Sens 44(11):3452–3461

    Article  Google Scholar 

  15. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, Cambridge, MA

    Google Scholar 

  16. Verrelst J, Muñoz J, Alonso L, Delegido J, Rivera JP, Moreno J, Camps-Valls G (2012) Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3. Remote Sens Environ 118:127–139

    Article  Google Scholar 

  17. Camps-Valls G, Verrelst J, Muñoz-Marí J, Laparra V, Mateo-Jimenez F, Gómez-Dans J (2016) A survey on gaussian processes for earth-observation data analysis: a comprehensive investigation. IEEE Geosci Remote Sens Mag 4(2):58–78

    Article  Google Scholar 

  18. Reichstein M, Camps-Valls G, Stevens B, Denzler J, Carvalhais N, Jung M (2019) Prabhat: deep learning and process understanding for data-driven Earth system science. Nature

    Google Scholar 

  19. Ulaby FT, Long D, Blackwell W, Elachi C, Fung A, Ruf C, Sarabandi K, van Zyl J, Zebker H (2014) Microwave radar and radiometric remote sensing. University of Michigan Press

    Google Scholar 

  20. Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer PD, Hirschi M, Ikonen J, de Jeu R, Kidd R, Lahoz W, Liu YY, Miralles D, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, van der Schalie R, Seneviratne SI, Smolander T, Lecomte P (2017) ESA CCI soil moisture for improved earth system understanding: state-of-the art and future directions. Remote Sens Environ 203:185–215. Earth Observation of Essential Climate Variables

    Google Scholar 

  21. Mateo-Sanchis A, Muñoz-Marí J, Campos-Taberner M, García-Haro J, Camps-Valls G (2018) Gap filling of biophysical parameter time series with multi-output gaussian processes. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, pp 4039–4042

    Google Scholar 

  22. Piles M, van der Schalie R, Gruber A, Muñoz-Marí J, Camps-Valls G, Mateo-Sanchis A, Dorigo W, de Jeu R (2018) Global estimation of soil moisture persistence with L and C-band microwave sensors. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, pp 8259–8262

    Google Scholar 

  23. Adsuara JE, Pérez-Suay A, Muñoz-Marí J, Mateo-Sanchis A, Piles M, Camps-Valls G (2019) Nonlinear distribution regression for remote sensing applications. IEEE Trans Geosci Remote Sens (2019) (Submitted)

    Google Scholar 

  24. Campos-Taberner M, Moreno-Martínez A, García-Haro FJ, Camps-Valls G, Robinson NP, Kattge J, Running SW (2018) Global estimation of biophysical variables from google earth engine platform. Remote Sens 10:1167

    Article  Google Scholar 

  25. Moreno A, Camps G, Kattge J, Robinson N, Reichstein M, van Bodegom P, Kramer K, Cornelissen J, Reich P, Bahn M et al (2018) A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens Environ 218:69–88

    Article  Google Scholar 

  26. Dorigo WA, Gruber A, Jeu RAMD, Wagner W, Stacke T, Loew A, Albergel C, Brocca L, Chung D, Parinussa RM, Kidd R (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens Environ 162:380–395

    Article  Google Scholar 

  27. Piles M, Ballabrera-Poy J, Muñoz-Sabater J (2019) Dominant features of global surface soil moisture variability observed by the SMOS satellite. Remote Sens 11(1):95

    Google Scholar 

  28. Alvarez MA, Rosasco L, Lawrence ND (2011) Kernels for vector-valued functions: a review. arXiv:1106.6251 [cs, math, stat]. ArXiv: 1106.6251

  29. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012) Retrieval of vegetation biophysical parameters using gaussian process techniques. IEEE Trans Geosci Remote Sens 50(5/P2):1832–1843

    Google Scholar 

  30. Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press

    Google Scholar 

  31. Albergel C, de Rosnay P, Gruhier C, Muñoz-Sabater J, Hasenauer S, Isaksen L, Kerr Y, Wagner W (2012) Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens Environ 118:215–226

    Article  Google Scholar 

  32. González-Zamora Á, Sánchez N, Martínez-Fernández J, Gumuzzio Á, Piles M, Olmedo E Long-term SMOS soil moisture products: a comprehensive evaluation across scales and methods in the duero basin (spain)

    Google Scholar 

  33. Al-Yaari A, Wigneron JP, Ducharne A, Kerr YH, Wagner W, Lannoy GD, Reichle R, Bitar AA, Dorigo W, Richaume P, Mialon A (2014) Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-land). Remote Sens Environ 152:614–626

    Article  Google Scholar 

  34. Albergel C, Dorigo W, Balsamo G, noz Sabater JM, de Rosnay P, Isaksen L, Brocca L, de Jeu R, Wagner W (2013) Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sens Environ 138:77–89

    Google Scholar 

  35. Polcher J, Piles M, Gelati E, Barella-Ortiz A, Tello M (2016) Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the iberian peninsula. Remote Sens Environ 174:69–81

    Article  Google Scholar 

  36. Sanchez N, Martinez-Fernandez J, Scaini A, Perez-Gutierrez C (2012) Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans Geosci Remote Sens 50(5):1602–1611

    Article  Google Scholar 

  37. Bircher S, Skou N, Jensen KH, Walker JP, Rasmussen L (2012) A soil moisture and temperature network for SMOS validation in western denmark. Hydrol Earth Syst Sci 16(5):1445–1463

    Article  Google Scholar 

  38. Torbern T, Rasmus F, Idrissa G, Olander RM, Silvia H, Cheikh M, Monica G, Stéphanie H, Inge S, Bo HR, Marc-Etienne R, Niklas O, Jørgen LO, Andrea E, Mathias M, Jonas A (2014) Ecosystem properties of semiarid savanna grassland in west africa and its relationship with environmental variability. Global Change Biol 21(1):250–264

    Google Scholar 

  39. Entekhabi D, Reichle RH, Koster RD, Crow WT (2010) Performance metrics for soil moisture retrievals and applications requirements. J Hydrometeorol 11:832–840

    Article  Google Scholar 

  40. Harchaoui Z, Bach F, Cappe O, Moulines E (2013) Kernel-based methods for hypothesis testing: a unified view. IEEE Signal Proc Mag 30(4):87–97

    Article  Google Scholar 

  41. Muandet K, Fukumizu K, Sriperumbudur B, Schölkopf B (2016) Kernel mean embedding of distributions: a review and beyond. now foundations and trends

    Google Scholar 

  42. Rojo-Álvarez JL, Martínez-Ramón M, Muñoz-Marí J, Camps-Valls G (2017) Digital signal processing with Kernel methods. Wiley, UK

    Google Scholar 

  43. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge, MA, USA

    Book  MATH  Google Scholar 

  44. Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley

    Google Scholar 

  45. Camps-Valls G, Gómez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  46. Konings AG, Piles M, Das N, Entekhabi D (2017) L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sens Environ 198:460–470

    Article  Google Scholar 

  47. Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11(3–4):185–200

    Article  Google Scholar 

  48. Chaparro D, Piles M, Vall-llossera M, Camps A, Konings AG, Entekhabi D (2018) L-band vegetation optical depth seasonal metrics for crop yield assessment. Remote Sens Environ 212:249–259

    Article  Google Scholar 

  49. Piles M, Camps-Valls G, Chaparro D, Entekhabi D, Konings AG, Jagdhuber T (2017) Remote sensing of vegetation dynamics in agro-ecosystems using smap vegetation optical depth and optical vegetation indices. In: IGARSS17, pp 4346–4349

    Google Scholar 

  50. López-Lozano R, Duveiller G, Seguini L, Meroni M, García-Condado S, Hooker J, Leo O, Baruth B (2015) Towards regional grain yield forecasting with 1km-resolution EO biophysical products: strengths and limitations at pan-european level. Agric For Meteorol 206:12–32

    Article  Google Scholar 

  51. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  52. He M, Kimball JS, Maneta MP, Maxwell BD, Moreno A, Beguería S, Wu X (2018) Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens 10:372

    Article  Google Scholar 

  53. Robinson NP, Allred B, Jones MO, Moreno A, Kimball JS, Naugle D, Erickson TA, Richardson AD (2017) A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous united states. Remote Sens 9:823

    Article  Google Scholar 

  54. Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 43:75–91

    Article  Google Scholar 

  55. Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141

    Article  Google Scholar 

  56. Berger K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T (2018) Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study. Remote Sens 10:85

    Article  Google Scholar 

  57. Campos-Taberner M, García-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Busetto L, Katsantonis D, Stavrakoudis D, Minakou C, Gatti L, Barbieri M, Holecz F, Stroppiana D, Boschetti M (2017) Exploitation of SAR and optical sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens 9:248

    Article  Google Scholar 

  58. Campos-Taberner M, García-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Crema A, Boschetti M (2016) Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens Environ 187:102–118

    Article  Google Scholar 

  59. García-Haro FJ, Campos-Taberner M, noz Marí JM, Laparra V, Camacho F, Sánchez-Zapero J, Camps-Valls G (2018) Derivation of global vegetation biophysical parameters from EUMETSAT polar system. ISPRS J Photogramm Remote Sens 139:57–75

    Google Scholar 

  60. Kattge J, Díaz S, Lavorel S, Prentice I, Leadley P, Bönisch G et al (2011) TRY-a global database of plant traits. Glob Change Biol 17:2905–2935

    Article  Google Scholar 

  61. Madani N, Kimball J, Ballantyne A, Affleck D, van Bodegom P, Reich P, Kattge J, Sala A et al (2018) Future global productivity will be affected by plant trait response to climate. Sci Rep 8(2870)

    Google Scholar 

  62. Belgiu M, Lucian D (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  63. De’ath G, Fabricius K (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  64. Evans J, Cushman S (2009) Gradient modeling of conifer species using random forests. Landsc Ecol 24:673–683

    Article  Google Scholar 

  65. Cutler D, Edwards J, Thomas C, Beard K, Cutler A, Hess K, Gibson J, Lawler J (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  Google Scholar 

  66. Chen YW, Lin CJ (2006) Combining SVMs with various feature selection strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction. Studies in fuzziness and soft computing, vol 207. Springer, Berling, Heidelberg

    Google Scholar 

  67. Breiman L, Friedman J (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 391:1580–1598

    MathSciNet  MATH  Google Scholar 

  68. Yan K, Park T, Yan G, Liu Z, Yang B, Chen C, Nemani R, Knyazikhin Y, Myneni R (2016) Evaluation of MODIS LAI/FPAR product collection 6. part 2: validation and intercomparison. Remote Sens 8(460)

    Google Scholar 

  69. Campos-Taberner M, j García-Haro F, Busetto L, Ranghetti L, Martínez B, Gilabert MA, Camps-Valls G, Camacho F, Boschetti M (2018) A critical comparison of remote sensing leaf area index estimates over rice-cultivated areas: from Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT polar system. Remote Sens 10:763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Moreno-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Martínez, Á. et al. (2020). Machine Learning Methods for Spatial and Temporal Parameter Estimation. In: Prasad, S., Chanussot, J. (eds) Hyperspectral Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-38617-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38617-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38616-0

  • Online ISBN: 978-3-030-38617-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics