Skip to main content

Automatic Target Detection for Sparse Hyperspectral Images

  • Chapter
  • First Online:
Hyperspectral Image Analysis

Abstract

In this work, a novel target detector for hyperspectral imagery is developed. The detector is independent on the unknown covariance matrix, behaves well in large dimensions, distributional free, invariant to atmospheric effects, and does not require a background dictionary to be constructed. Based on a modification of the robust principal component analysis (RPCA), a given hyperspectral image (HSI) is regarded as being made up of the sum of a low-rank background HSI and a sparse target HSI that contains the targets based on a pre-learned target dictionary specified by the user. The sparse component is directly used for the detection, that is, the targets are simply detected at the non-zero entries of the sparse target HSI. Hence, a novel target detector is developed, which is simply a sparse HSI generated automatically from the original HSI, but containing only the targets with the background is suppressed. The detector is evaluated on real experiments, and the results of which demonstrate its effectiveness for hyperspectral target detection especially when the targets are well matched to the surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A natural suggestion could be that the rank of \(\mathbf {L}\) usually has a physical meaning (e.g., number of endmembers in background), and thus, why not to minimize the latter two terms in Eq. (15.2) with the constraint that the rank of \(\mathbf {L}\) should not be larger than a fixed value d? That is,

    $$ \underset{\mathbf {L}, \mathbf {C}}{\mathrm {min}} \, \left\{ \lambda \,\left\| \mathbf {C}\right\| _{2,1} + \left\| \mathbf {D} - \mathbf {L} - \left( \mathbf {A}_t \mathbf {C}\right) ^T\right\| _F^2 \right\} \,, ~~s.t.~~ \mathrm {rank}(\mathbf {L}) \le d. $$

    In our opinion, assuming that the number of endmembers in background is known exactly will be a strong assumption and our work will be less general as a result. One can assume d to be some upper bound, in which case, the suggested formulation is a possible one. However, solving such a problem (with a hard constraint that the rank should not exceed some bound) is in general a NP-hard problem, unless there happens to be some special form in the objective which allows for a tractable solution. Thus, we adopt the soft constraint form with the nuclear norm as a proxy for the rank of \(\mathbf {L}\); this is an approximation commonly done in the field and is found to give good solutions in many problems empirically.

  2. 2.

    We regret that in our work in [51, 52], we missed to add “221–224” with the other bands that are removed. Adding “221–224” will give exactly a total of 186 bands.

  3. 3.

    The MATLAB code of the proposed detector and experiments is available upon request. Please feel free to contact Ahmad W. Bitar.

  4. 4.

    We thank Dr. Gregg A. Swayze from the United States Geological Survey (USGS) who has suggested us to evaluate our model (15.2) on the distinction between alunite and kaolinite minerals.

  5. 5.

    We have been inspired by Fig. 8D-E in [75] to provide a close example of it in this chapter as can be shown in Fig. 15.4.

References

  1. Shaw G, Manolakis D (2002) Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag 19(1):12–16

    Article  Google Scholar 

  2. Manolakis D, Marden D, Shaw G (2003) Hyperspectral image processing for automatic target detection applications. Linc Lab J 14(1):79–116

    Google Scholar 

  3. Manolakis DG, Lockwood RB, Cooley TW (2016) Hyperspectral imaging remote sensing: physics, sensors, and algorithms. Cambridge University Press

    Google Scholar 

  4. Zhang L, Zhang Q, Du B, Huang X, Tang YY, Tao D (2018) Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans Cybern 48(1):16–28

    Article  Google Scholar 

  5. Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Du B (2015) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit48(10):3102 – 3112 (Discriminative feature learning from big data for visual recognition)

    Google Scholar 

  6. Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1(2):6–36

    Article  Google Scholar 

  7. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton JC, Trianni (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122, (Imaging spectroscopy special issue)

    Google Scholar 

  8. Du Q, Zhang L, Zhang B, Tong X, Du P, Chanussot J (2013) Foreword to the special issue on hyperspectral remote sensing: theory, methods, and applications. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):459–465

    Article  Google Scholar 

  9. Gader PD, Chanussot J (2021) Understanding hyperspectral image and signal processing, Wiley

    Google Scholar 

  10. Dalla Mura M, Benediktsson JA, Chanussot J, Bruzzone L (2011) The evolution of the morphological profile: from panchromatic to hyperspectral images, Springer, Berlin, Heidelberg, pp 123–146

    Google Scholar 

  11. Prasad S, Bruce LM, Chanussot J (2011) Optical remote sensing: advances in signal processing and exploitation techniques. Augmented vision and reality. Springer, Heidelberg

    Google Scholar 

  12. Chanussot J, Collet C, Chehdi K (2009) Multivariate image processing, augmented vision and reality. STE Ltd, UK and Wiley, USA

    Google Scholar 

  13. Pons JMF (2014) Robust target detection for hyperspectral imaging. PhD thesis, CentraleSupélec

    Google Scholar 

  14. Manolakis D, Lockwood R, Cooley T, Jacobson J (2009) Is there a best hyperspectral detection algorithm? In: Proceeding of SPIE 7334, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XV, 733402, 27 April 2009

    Google Scholar 

  15. Villa A, Chanussot J, Benediktsson JA, Jutten C (2011) Unsupervised classification and spectral unmixing for sub-pixel labelling. In: IEEE International geoscience and remote sensing symposium, July, 71–74

    Google Scholar 

  16. Yokoya N, Chanussot J, Iwasaki A (2014) Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization. IEEE Trans Geosci Remote Sens 52(2):1430–1437

    Article  Google Scholar 

  17. Villa A, Chanussot J, Benediktsson JA, Jutten C (2011) Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE J Sel Top Signal Process 5(3):521–533

    Article  Google Scholar 

  18. Licciardi GA, Villa A, Khan MM, Chanussot J (2012) Image fusion and spectral unmixing of hyperspectral images for spatial improvement of classification maps. In: IEEE International and geosciencing remote sensing symposium, July, pp 7290–7293

    Google Scholar 

  19. Patel NK, Patnaik C, Dutta S, Shekh AM, Dave AJ (2001) Study of crop growth parameters using airborne imaging spectrometer data. Int J Remote Sens 22(12):2401–2411

    Article  Google Scholar 

  20. Datt B, McVicar TR, van Niel TG, Jupp DLB, Pearlman JS (2003) Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans Geosci Remote Sens 41:1246–1259

    Article  Google Scholar 

  21. Hörig B, Kühn F, Oschütz F, Lehmann F (2001) HyMap hyperspectral remote sensing to detect hydrocarbons. Int J Remote Sens 22:1413–1422

    Article  Google Scholar 

  22. Manolakis D, Shaw G (2002) Detection algorithms for hyperspectral imaging applications. Signal Process Mag IEEE 19(1):29–43

    Article  Google Scholar 

  23. Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69

    Article  Google Scholar 

  24. Eismann MT, Stocker AD, Nasrabadi NM (2009) Automated hyperspectral cueing for civilian search and rescue. Proc IEEE 97(6):1031–1055

    Article  Google Scholar 

  25. Manolakis D, Truslow E, Pieper M, Cooley T, Brueggeman M (2014) Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process Mag 31(1):24–33

    Article  Google Scholar 

  26. Frontera-Pons J, Pascal F, Ovarlez J-P (2017) Adaptive nonzero-mean Gaussian detection. IEEE Trans Geosci Remote Sens 55(2):1117–1124

    Article  Google Scholar 

  27. Frontera-Pons J, Veganzones MA, Pascal F, Ovarlez J-P (2016) Hyperspectral anomaly detectors using robust estimators. IEEE J Sel Top Appl Earth Obs Remote Sens 9(2):720–731

    Article  Google Scholar 

  28. Frontera-Pons J, Ovarlez J-P, Pascal F (2017) Robust ANMF detection in noncentered impulsive background. IEEE Signal Process Lett 24(12):1891–1895

    Article  Google Scholar 

  29. Frontera-Pons J, Veganzones MA, Velasco-Forero S, Pascal F, Ovarlez JP, Chanussot J (2014) Robust anomaly detection in hyperspectral imaging. In: IEEE geoscience and remote sensing symposium, July, pp 4604–4607

    Google Scholar 

  30. Cavalli RM, Licciardi GA, Chanussot J (2013) Detection of anomalies produced by buried archaeological structures using nonlinear principal component analysis applied to airborne hyperspectral image. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):659–669

    Article  Google Scholar 

  31. Manolakis D, Shaw G, Keshava N (2000) Comparative analysis of hyperspectral adaptive matched filter detectors. In: Proceedings of SPIE 4049, algorithms for multispectral, hyperspectral, and ultraspectral imagery VI, vol 2

    Google Scholar 

  32. Nasrabadi NM (2008) Regularized spectral matched filter for target recognition in hyperspectral imagery. IEEE Signal Process Lett 15:317–320

    Article  Google Scholar 

  33. Kraut S, Scharf LL (1999) The CFAR adaptive subspace detector is a scale-invariant GLRT. On Signal Process, IEEE Trans 47(9):2538–2541

    Article  Google Scholar 

  34. Kelly EJ (1986) An adaptive detection algorithm. IEEE Trans Aerosp Electron Syst 23(1):115–127

    Article  Google Scholar 

  35. Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88(2):365–411

    Article  MathSciNet  MATH  Google Scholar 

  36. Ledoit O, Wolf M, (2003) Honey, I shrunk the sample covariance matrix. UPF Economics and Business Working Paper, no. 691

    Google Scholar 

  37. Bitar AW, Ovarlez J-P, Cheong L-F (2017) Sparsity-based cholesky factorization and its application to hyperspectral anomaly detection. In: IEEE workshop on computational advances in multi-sensor adaptive processing (CAMSAP-17). Curaçao, Dutch Antilles

    Google Scholar 

  38. Chen Y, Wiesel A, Hero AO (2010) Robust shrinkage estimation of high-dimensional covariance matrices. In: IEEE Sensor Array and Multichannel Signal Processing Workshop, OCt, 189–192

    Google Scholar 

  39. Pascal F, Chitour Y (2014) Shrinkage covariance matrix estimator applied to stap detection. In: IEEE workshop on statistical signal processing (SSP), June, 324–327

    Google Scholar 

  40. Pascal F, Chitour Y, Quek Y (2014) Generalized robust shrinkage estimator and its application to stap detection problem. IEEE Trans Signal Process 62(21):5640–5651

    Article  MathSciNet  MATH  Google Scholar 

  41. Healey G, Slater D (1999) Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Trans Geosci Remote Sens 37(6):2706–2717

    Article  Google Scholar 

  42. Thai B, Healey G (2002) Invariant subpixel material detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(3):599–608

    Article  Google Scholar 

  43. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  44. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  45. Pillai JK, Patel VM, Chellappa R (2009) Sparsity inspired selection and recognition of iris images. In: 2009 IEEE 3rd international conference on biometrics: theory, applications, and systems, Sept, pp 1–6

    Google Scholar 

  46. Hang X, Wu F-X (2009) Sparse representation for classification of tumors using gene expression data. J Biomed Biotechnol 6

    Google Scholar 

  47. Guo Z, Wittman T, Osher S (2009) L1 unmixing and its application to hyperspectral image enhancement

    Google Scholar 

  48. Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):354–379

    Article  Google Scholar 

  49. Chen Y, Nasrabadi NM, Tran TD (2011) Sparse representation for target detection in hyperspectral imagery. IEEE J Sel Top Signal Process 5(3):629–640

    Article  Google Scholar 

  50. Zhang Y, Du B, Zhang L (2015) A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans Geosci Remote Sens 53(3):1346–1354

    Article  Google Scholar 

  51. Bitar AW, Cheong L, Ovarlez J (2018) Target and background separation in hyperspectral imagery for automatic target detection. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1598–1602

    Google Scholar 

  52. Bitar AW, Cheong L, Ovarlez J (2019) Sparse and low-rank matrix decomposition for automatic target detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 57(8):5239–5251

    Article  Google Scholar 

  53. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11:1–11:37

    Google Scholar 

  54. Wright J, Arvind G, Shankar R, Yigang P, Ma Y (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates, Inc., pp 2080–2088

    Google Scholar 

  55. Chen S-Y, Yang S, Kalpakis K, Chang C (2013) Low-rank decomposition-based anomaly detection. In: Proceedings of SPIE 8743 algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XIX, vol 8743, pp 1–7

    Google Scholar 

  56. Zhang Y, Du B, Zhang L, Wang S (2016) A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 54(3):1376–1389

    Article  Google Scholar 

  57. Xu Y, Wu Z, Li J, Plaza A, Wei Z (2016) Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans Geosci Remote Sens 54(4):1990–2000

    Article  Google Scholar 

  58. Xu Y, Wu Z, Chanussot J, Wei Z (2018) Joint reconstruction and anomaly detection from compressive hyperspectral images using mahalanobis distance-regularized tensor RPCA. IEEE Trans Geosci Remote Sens 56(5):2919–2930

    Article  Google Scholar 

  59. Xu Y, Wu Z, Chanussot J, Dalla Mura M, Bertozzi AL, Wei Z (2018) Low-rank decomposition and total variation regularization of hyperspectral video sequences. IEEE Trans Geosci Remote Sens 56(3):1680–1694

    Google Scholar 

  60. Bitar AW, Cheong L, Ovarlez J (2017) Simultaneous sparsity-based binary hypothesis model for real hyperspectral target detection. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4616–4620

    Google Scholar 

  61. Veganzones MA, Simões M, Licciardi G, Yokoya N, Bioucas-Dias JM, Chanussot J (2016) Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans Image Process 25(1):274–288

    Google Scholar 

  62. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  63. Zhou Z, Li X, Wright J, Candés E, Ma Y (2010) Stable principal component pursuit. In: 2010 IEEE International symposium on information theory, pp 1518–1522

    Google Scholar 

  64. Chen Z, Ellis DPW (2013) Speech enhancement by sparse, low-rank, and dictionary spectrogram decomposition. In: IEEE Workshop on applications of signal processing to audio and acoustics Oct, 1–4

    Google Scholar 

  65. Sun P, Qin J (2016) Low-rank and sparsity analysis applied to speech enhancement via online estimated dictionary. IEEE Signal Process Lett 23(12):1862–1866

    Article  Google Scholar 

  66. Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  67. Candes EJ, Recht B, Exact low-rank matrix completion via convex optimization. In: 2008 46th Annual allerton conference on communication, control, and computing, Sept, pp 806–812

    Google Scholar 

  68. Lewis AS (2003) The mathematics of eigenvalue optimization. Math Program 97(1):155–176

    Article  MathSciNet  MATH  Google Scholar 

  69. Watson GA (1992) Characterization of the subdifferential of some matrix norms. Linear Algebr Its Appl 170:33–45

    Article  MathSciNet  MATH  Google Scholar 

  70. Boyd Stephen, Parikh Neal, Chu Eric, Peleato Borja, Eckstein Jonathan (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  71. Yang Junfeng, Yin Wotao, Zhang Yin, Wang Yilun (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci 2(2):569–592

    Article  MathSciNet  MATH  Google Scholar 

  72. Swayze GA, Clark RN, Goetz AFH, Livo KE, Breit GN, Kruse FA, Sutley SJ, Snee LW, Lowers HA, Post JL, Stoffregen RE, Ashley RP (2014) Mapping advanced argillic alteration at cuprite, nevada, using imaging spectroscopy. Econ Geol 109(5):1179

    Article  Google Scholar 

  73. Airbone Visible/Infrared Imaging Spectrometer. https://aviris.jpl.nasa.gov

  74. Swayze GA, Clark RN, Goetz AFH, Chrien TG, Gorelick NS (2003) Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the tetracorder algorithm. J Geophys Res: Planets 108(E9):5105

    Article  Google Scholar 

  75. Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA, Imaging spectroscopy: earth and planetary remote sensing with the usgs tetracorder and expert systems. J Geophys Res: Planets 108(E12)

    Google Scholar 

  76. Berk A, Bernstein L, Robertson D (1989) MODTRAN: a moderate resolution model for LOWTRAN 7. Tech. Rep. GL-TR-90-0122, Geophysics Laboratory, Bedford, MA

    Google Scholar 

  77. Clark RN, Swayze GA, Gallagher AJ, King TVV, Calvin WM (1993) The U.S. geological survey, digital spectral library: version 1: 0.2 to 3.0 micros. U.S. Geological Survey, Open file report

    Google Scholar 

  78. Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER Spectral Library Version 2.0. Remote Sens Environ 113:711–715

    Article  Google Scholar 

  79. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    Google Scholar 

  80. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–451

    Article  MathSciNet  MATH  Google Scholar 

  81. Shevade SK, Keerthi SS (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19(17):2246–2253

    Article  Google Scholar 

  82. Amir B, Marc T (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Img Sci 2(1):183–202

    Google Scholar 

  83. Wright SJ, Nowak RD, Figueiredo MAT (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493

    Article  MathSciNet  MATH  Google Scholar 

  84. Ye Jieping, Liu Jun (2012) Sparse methods for biomedical data. SIGKDD Explor Newsl 14(1):4–15

    Article  Google Scholar 

  85. Candès Emmanuel J, Wakin Michael B, Boyd Stephen P (2008) Enhancing sparsity by reweighted \(l_1\) minimization. J Fourier Anal Appl 14(5):877–905

    Article  MathSciNet  MATH  Google Scholar 

  86. Zhang Tong (2010) Analysis of multi-stage convex relaxation for sparse regularization. J Mach Learn Res 11:1081–1107

    MathSciNet  MATH  Google Scholar 

  87. Zhang T (2013) Multi-stage convex relaxation for feature selection Bernoulli 19(5B):2277–2293

    Google Scholar 

  88. Foucart S, Lai MJ (2009) Sparsest solutions of underdetermined linear systems via \(l_q\)-minimization for \(0< q <1\). Appl Comput Harmon Anal 26(3):395–407

    Article  MathSciNet  MATH  Google Scholar 

  89. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  90. Candès E, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14(5):877–905

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Statist 38(2):894–942

    Google Scholar 

  92. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans Image Process 4(7)932–946, Jul

    Google Scholar 

  93. Trzasko J, Manduca A (2009) Relaxed conditions for sparse signal recovery with general concave priors. IEEE Trans Signal Process 57(11):4347–4354

    Article  MathSciNet  MATH  Google Scholar 

  94. Gong P, Ye J, Zhang C (2012) Multi-stage multi-task feature learning. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems vol 25. Curran Associates, Inc., pp 1988–1996

    Google Scholar 

Download references

Acknowledgements

The authors would greatly thank Dr. Gregg A. Swayze from the United States Geological Survey (USGS) for his time in providing them helpful remarks about the cuprite data and especially on the buddingtonite, alunite, and kaolinite minerals. They would also like to thank the handling editors (Prof. Saurabh Prasad and Prof. Jocelyn Chanussot) and some other anonymous reviewers for the careful reading and helpful remarks/suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad W. Bitar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bitar, A.W., Ovarlez, JP., Cheong, LF., Chehab, A. (2020). Automatic Target Detection for Sparse Hyperspectral Images. In: Prasad, S., Chanussot, J. (eds) Hyperspectral Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-38617-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38617-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38616-0

  • Online ISBN: 978-3-030-38617-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics