Skip to main content

Low Dimensional Manifold Model in Hyperspectral Image Reconstruction

  • Chapter
  • First Online:
Hyperspectral Image Analysis

Abstract

In this chapter, we present a low dimensional manifold model (LDMM) for hyperspectral image reconstruction. This model is based on the observation that the spatial–spectral blocks of hyperspectral images typically lie close to a collection of low dimensional manifolds. To emphasize this, we directly use the dimension of the manifold as a regularization term in a variational functional, which can be solved efficiently by alternating direction of minimization and advanced numerical discretization. Experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of LDMM in terms of both speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal HK, Majumdar A (2016) Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci Remote Sens Lett 13(3):442–446

    Google Scholar 

  2. Bertozzi AL, Flenner A (2012) Diffuse interface models on graphs for classification of high dimensional data. Multiscale Model Simul 10(3):1090–1118

    Article  MathSciNet  MATH  Google Scholar 

  3. Bioucas-Dias J, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):354–379

    Article  Google Scholar 

  4. Bühler T, Hein M (2009) Spectral clustering based on the graph p-Laplacian. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 81–88

    Google Scholar 

  5. Carlsson G, Ishkhanov T, de Silva V, Zomorodian A (2008) On the local behavior of spaces of natural images. Int J Comput Vis 76(1):1–12

    Article  MathSciNet  Google Scholar 

  6. Chang C-I (2003) Hyperspectral imaging: techniques for spectral detection and classification, vol 1. Springer Science & Business Media

    Google Scholar 

  7. Charles AS, Olshausen BA, Rozell CJ (2011) Learning sparse codes for hyperspectral imagery. IEEE J Sel Top Signal Process 5(5):963–978

    Article  Google Scholar 

  8. Chung FR, Graham FC (1997) Spectral graph theory, vol 92. American Mathematical Society

    Google Scholar 

  9. Dobigeon N, Tourneret J-Y, Richard C, Bermudez J, McLaughlin S, Hero A (2014) Nonlinear unmixing of hyperspectral images: models and algorithms. IEEE Signal Process Mag 31(1):82–94

    Article  Google Scholar 

  10. Friedman JH, Bentley JL, Finkel RA (1976) An algorithm for finding best matches in logarithmic time. ACM Trans Math Softw, 3(SLAC-PUB-1549-REV. 2):209–226

    Google Scholar 

  11. Gilboa G, Osher S (2009) Nonlocal operators with applications to image processing. Multiscale Model Simul 7(3):1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  13. He W, Zhang H, Zhang L, Shen H (2016) Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans Geosci Remote Sens 54(1):178–188

    Article  Google Scholar 

  14. Hu H, Sunu J, Bertozzi AL (2015) Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Energy minimization methods in computer vision and pattern recognition: 10th international conference, EMMCVPR 2015, Hong Kong, China, January 13-16, 2015. Proceedings. Springer International Publishing, Cham, pp 209–222

    Google Scholar 

  15. Iordache MD, Bioucas-Dias JM, Plaza A (2012) Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans Geosci Remote Sens 50(11):4484–4502

    Article  Google Scholar 

  16. Kawakami R, Matsushita Y, Wright J, Ben-Ezra M, Tai YW, Ikeuchi K (2011) High-resolution hyperspectral imaging via matrix factorization. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 2329–2336

    Google Scholar 

  17. Lee AB, Pedersen KS, Mumford D (2003) The nonlinear statistics of high-contrast patches in natural images. Int J Comput Vis 54(1–3):83–103

    Article  MATH  Google Scholar 

  18. Li J, Yuan Q, Shen H, Zhang L (2015) Hyperspectral image recovery employing a multidimensional nonlocal total variation model. Signal Process 111:230–248

    Article  Google Scholar 

  19. Li Z, Shi Z, Sun J (2017) Point integral method for solving poisson-type equations on manifolds from point clouds with convergence guarantees. Commun Comput Phys 22(1):228–258

    Article  MathSciNet  Google Scholar 

  20. Osher S, Shi Z, Zhu W (2017) Low dimensional manifold model for image processing. SIAM J Imaging Sci 10(4):1669–1690

    Article  MathSciNet  MATH  Google Scholar 

  21. Peyré G (2008) Image processing with nonlocal spectral bases. Multiscale Model Simul 7(2):703–730

    Article  MathSciNet  MATH  Google Scholar 

  22. Peyré G (2011) A review of adaptive image representations. IEEE J Sel Top Signal Process 5(5):896–911

    Article  MATH  Google Scholar 

  23. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi Z, Osher S, Zhu W (2017) Generalization of the weighted nonlocal Laplacian in low dimensional manifold model. J Sci Comput

    Google Scholar 

  25. Shi Z, Osher S, Zhu W (2017) Weighted nonlocal Laplacian on interpolation from sparse data. J Sci Comput 73(2):1164–1177

    Article  MathSciNet  MATH  Google Scholar 

  26. Toh K-C, Yun S (2010) An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac J Optim 6(615–640):15

    MathSciNet  MATH  Google Scholar 

  27. Wu Z, Zhu W, Chanussot J, Xu Y, Osher S (2019) Hyperspectral anomaly detection via global and local joint modeling of background. IEEE Trans Signal Process 67(14):3858–3869

    Article  MathSciNet  MATH  Google Scholar 

  28. Xing Z, Zhou M, Castrodad A, Sapiro G, Carin L (2012) Dictionary learning for noisy and incomplete hyperspectral images. SIAM J Imaging Sci 5(1):33–56

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan Q, Zhang L, Shen H (2012) Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans Geosci Remote Sens 50(10):3660–3677

    Article  Google Scholar 

  30. Zhu W, Chayes V, Tiard A, Sanchez S, Dahlberg D, Bertozzi AL, Osher S, Zosso D, Kuang D (2017) Unsupervised classification in hyperspectral imagery with nonlocal total variation and primal-dual hybrid gradient algorithm. IEEE Trans Geosci Remote Sens 55(5):2786–2798

    Article  Google Scholar 

  31. Zhu W, Shi Z, Osher S (2018) Scalable low dimensional manifold model in the reconstruction of noisy and incomplete hyperspectral images. In: 9th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS)

    Google Scholar 

  32. Zhu W, Wang B, Barnard R, Hauck CD, Jenko F, Osher S (2018) Scientific data interpolation with low dimensional manifold model. J Comput Phys 352:213–245

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th international conference on machine learning (ICML-03), pp 912–919

    Google Scholar 

Download references

Acknowledgements

This work was supported by STROBE: A National Science Foundation Science & Technology Center, under Grant No. DMR 1548924 as well as DOE-DE-SC0013838 and NSFC 11671005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, W., Shi, Z., Osher, S. (2020). Low Dimensional Manifold Model in Hyperspectral Image Reconstruction. In: Prasad, S., Chanussot, J. (eds) Hyperspectral Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-38617-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38617-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38616-0

  • Online ISBN: 978-3-030-38617-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics