Skip to main content

Dynamic Operability Analysis

  • Chapter
  • First Online:
Architecting Networked Engineered Systems

Abstract

In Chap. 2, we presented the DFDM framework for the design of Networked Manufacturing Systems (NMS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( t_{f}^{d} \) :

Desired response time

\( t_{f} \) :

Response time

\( t_{f}^{*} \) :

Shortest desired response time

\( y_{sp} \) :

Change in the requirements

d :

Change in disturbance

u :

Input points of AOS

y :

Output points of DOS

\( F_{i - 1} \) :

Feed flow rate

\( F_{i} \) :

Flow rate

\( V_{i} \) :

Volume

t:

Time

\( C_{Ai} \) :

Concertation of A

\( C_{Ai - 1} \) :

Feed concertation of A

\( k_{i} \) :

Reaction rate constant

\( \rho \) :

Density of A

\( c_{p} \) :

Heat capacity of A

\( T_{i} \) :

Reactor temperature

\( T_{i - 1} \) :

Feed temperature

\( \Delta H \) :

Heat of reaction

U :

Overall heat-transfer coefficient

\( T_{Ci} \) :

Jacket temperature

\( T_{C0} \) :

Coolant feed temperature

\( A_{i} \) :

Heat-transfer area

\( \rho_{C} \) :

Density of coolant

\( c_{pC} \) :

Heat capacity of coolant

\( V_{Ci} \) :

Volume of the jacket

\( F_{Ci} \) :

Coolant flow rate

E :

Activation energy

R :

Reference or nominal value

\( A_{si} \) :

Side heat-transfer area

\( A_{bi} \) :

Bottom heat-transfer area

\( A_{si}^{R} \) :

Reference side heat-transfer area

\( V_{i}^{R} \) :

Reference volume

\( x_{1i} \) :

Normalized reactor holdup

\( x_{2i} \) :

Concentration of reactor A

\( x_{3i} \) :

Reactor temperature

\( x_{4i} \) :

Coolant temperature

\( x_{4i} \) :

Coolant temperature

\( q_{i} \) :

Normalized flow rate

\( q_{Ci} \) :

Normalized coolant flow rate

\( \alpha_{i} \) :

Ratio of coolant flow rate and flow rate and

\( \mu_{i} \) :

Ratio of flow rate and coolant flow rate

\( \delta_{si} \) :

Thickness of side heat-transfer area

\( \delta_{bi} \) :

Thickness of bottom heat-transfer area

\( k_{0} \) :

Arrhenius constant

\( \Delta H \) :

Heat of reaction

ODF = 1:

Overdesign factor in the reactor volume obtain DIS

\( T_{i} \) :

Strong constraint

\( F_{Ci} \) :

Assumption

\( k \) :

Reactor rate constant at reactor temperature

\( Q_{\hbox{max} } /Q \) :

Controllability index of Luyben

\( \Delta T \) :

Temperature difference between jacket and reactor

\( \uplambda_{\text{ij}} \) :

The jth eigenvalue of ith reactor (i is omitted for single reactors)

i:

Reactor number

References

  • Arkun, Y. (1988). Relative Sensitivity: A Dynamic Closed-Loop Interaction Measure and Design Tool. AIChE Journal, 34(4), 672–675.

    Article  MathSciNet  Google Scholar 

  • Bahri, P. A., Bandoni, J. A., & Romagnoli, J. A. (1996). Effect of disturbances in optimizing control: Steady-state open-loop backoff problem. AIChE Journal, 42(4), 983–994.

    Article  Google Scholar 

  • Cao, Y., Biss, D., & Perkins, J. (1996). Assessment of input-output controllability in the presence of control constraints. Computers & Chemical Engineering, 20(4), 337–346.

    Article  Google Scholar 

  • Chenery, S. D. (1997). Process controllability analysis using linear and nonlinear optimization. In Ph.D. Monograph. London, UK: Imperial College of Science, Technology, and Medicine.

    Google Scholar 

  • Dimitriadis, V. D., & Pistikopoulos, E. N. (1995). Flexibility analysis of dynamic systems. Industrial and Engineering Chemistry Research, 34(12), 4451–4462.

    Article  Google Scholar 

  • Fisher, W. R., Doherty, M. F., & Douglas, J. M. (1988). The interface between design and control. 1. Process controllability. Industrial and Engineering Chemistry Research, 27(4), 597–605.

    Article  Google Scholar 

  • Georgakis, C., Uztürk, D., Subramanian, S., & Vinson, D. R. (2003). On the operability of continuous processes. Control Engineering Practice, 11(8), 859–869.

    Article  Google Scholar 

  • Grosdidier, P., Morari, M., & Holt, B. R. (1985). Closed-loop properties from steady-state gain information. Industrial and Engineering Chemistry Fundamentals, 24(2), 221–235.

    Google Scholar 

  • Grosdidier, P., & Morari, M. (1986). Analysis of interactions using structured singular values. In IEEE American Control Conference.

    Google Scholar 

  • Grossmann, I. E., & Floudas, C. A. (1987). Active constraint strategy for flexibility analysis in chemical processes. Computers & Chemical Engineering, 11, 675–693.

    Article  Google Scholar 

  • Hovd, M., & Skogestad, S. (1992). Simple frequency-dependent tools for control system analysis, structure selection and design. Automatica, 28(5), 989–996.

    Article  MathSciNet  Google Scholar 

  • Lewin, D. (1996). A simple tool for disturbance resiliency diagnosis and feedforward control design. Computers & Chemical Engineering, 20(1), 13–25.

    Article  Google Scholar 

  • Lyman, P. R., Luyben, W. L., & Tyreus, B. D. (1996). Method for assessing the effect of design parameters on controllability. Industrial and Engineering Chemistry Research, 35(10), 3484–3497.

    Article  Google Scholar 

  • Manousiouthakis, V., Savage, R., & Arkun, Y. (1986). Synthesis of decentralized process control structures using the concept of block relative gain. AIChE Journal, 32(6), 991–1003.

    Article  Google Scholar 

  • McAvoy, T. J. (1983). Interaction analysis: Principles and applications. NC: Instrument Society of America Research Triangle Park.

    MATH  Google Scholar 

  • Milisavljevic, J. (2018). Architecting networked engineering systems. Doctoral Dissertation, The School of Aerospace and Mechanical Engineering. University of Oklahoma, Norman, Oklahoma.

    Google Scholar 

  • Milisavljevic, J., Commuri, S., Allen, J. K., & Mistree, F. (2018). Steady-state operability in design for dynamic management in realization of networked engineering systems. In ASME Design for Manufacturing and Assembly Conference. Quebec City, Quebec, Canada. Paper Number DETC2018–85864.

    Google Scholar 

  • Milisavljevic-Syed, J., Commuri, S., Allen, J. K., & Mistree, F. (2019b). Concurrent design exploration method for realizing networked manufacturing systems for industry 4.0. In 52nd CIRP Annual Conference, PROC-D-18-00262.

    Google Scholar 

  • Mohideen, M. J., Perkins, J. D., & Pistikopoulos, E. N. (1996). Optimal design of dynamic systems under uncertainty. AIChE Journal, 42(8), 2251–2272.

    Article  Google Scholar 

  • Morari, M. (1983). Design of resilient processing plants—III: A general framework for the assessment of dynamic resilience. Chemical Engineering Science, 38(11), 1881–1891.

    Article  Google Scholar 

  • Moore, C. (1986). Application of singular value decomposition to the design, analysis, and control of industrial processes. In American Control Conference, IEEE.

    Google Scholar 

  • Russo, L. P., & Bequette, B. W. (1995). Impact of process design on the multiplicity behavior of a jacketed exothermic CSTR. AIChE Journal, 41(1), 135–147.

    Article  Google Scholar 

  • Russo, L. P., & Bequette, B. W. (1998). Operability of chemical reactors: Multiplicity behavior of a jacketed styrene polymerization reactor. Chemical Engineering Science, 53(1), 27–45.

    Article  Google Scholar 

  • Stanley, G., Marino-Galarraga, M., & McAvoy, T. J. (1985). Shortcut operability analysis 1: The relative disturbance gain. Industrial Engineering Chemistry Process Design and Development, 24, 1181–1188.

    Article  Google Scholar 

  • Subramanian, S., & Georgakis, C. (2000). Steady-state operability characteristics of reactors. Computers & Chemical Engineering, 24(2–7), 1563–1568.

    Article  Google Scholar 

  • Subramanian, S., Uztürk, D., & Georgakis, C. (2001). An optimization-based approach for the operability analysis of continuously stirred tank reactors. Industrial and Engineering Chemistry Research, 40(20), 4238–4252.

    Article  Google Scholar 

  • Swaney, R. E., & Grossmann, I. E. (1985a). An Index for operational flexibility in chemical process design. Part I: Formulation and theory. AIChE Journal, 31(4), 621–630.

    Article  Google Scholar 

  • Swaney, R. E., & Grossmann, I. E. (1985b). An index for operational flexibility in chemical process design. Part II: Computational algorithms. AIChE Journal, 31(4), 631–641.

    Article  Google Scholar 

  • Swartz, C. (1996). A computational framework for dynamic operability assessment. Computers & Chemical Engineering, 20(4), 365–371.

    Article  Google Scholar 

  • Uztiirk, D., & Georgakis, C. (1998). An optimal control perspective on the inherent dynamic operability of processes. In Annual AIChE Meeting. Miami, FL. Paper 217a.

    Google Scholar 

  • Uztürk, D., & Georgakis, C. (2001). Inherent dynamic operability of processes I: Definitions and analysis in the SISO case. Industrial and Engineering Chemistry Research, 41(3), 421–432.

    Article  Google Scholar 

  • Vinson, D. R., & Georgakis, C. (1998). A new measure of process output controllability. IFAC Proceedings Volumes, 31(11), 663–672.

    Article  Google Scholar 

  • Vinson, D. R., & Georgakis, C. (2000). A new measure of process output controllability. Journal of Process Control, 10(2–3), 185–194.

    Article  Google Scholar 

  • Zhu, Z. X., Lee, J., & Edgar, T. F. (1997). Steady state structural analysis and interaction characterization for multivariable control systems. Industrial and Engineering Chemistry Research, 36(9), 3718–3726.

    Article  Google Scholar 

  • Ziegler, J., & Nichols, N. (1943). Process lags in automatic control circuits. Trans. ASME, 65(5), 433–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Milisavljevic-Syed .

Glossary

ACRONES

Adaptable Concurrent Realization of Networked Engineering System

AIS

Achieved Input Space

AOS

Achieved Output Space

cDSP

Compromise Decision Support Problem

CSTR

Continuous single tank reactor

DAIS

Dynamic Available Input Space

DAOS

Dynamic Achieved Output Space

DDOS

Dynamic Desired Output Space

DFDM

Design for Dynamic Management

DIS

Desired Input Space

Disturbance Space

Space where system can be functional in the presence of disturbance

DOI

Dynamic Operability Index

DOM

Dynamic Operability Model

DOS

Desired Output Space

EDS

Excepted Disturbance Space

FI

Flexibility index

Functional System

System that is operable

MIMO

Multiple input multiple output

MTCP

Minimum Time Control Problem

NMS

Networked Manufacturing Systems

Operability Space

Space where system can be functional

Original System Design

New system design without existing specifications

RGA

Relative Gain Array

RHP

Right-half-plane

SISO

Single input single output

SSOM

Steady-State Operability Model

Variant System Design

System design with existing specifications

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milisavljevic-Syed, J., Allen, J.K., Commuri, S., Mistree, F. (2020). Dynamic Operability Analysis. In: Architecting Networked Engineered Systems . Springer, Cham. https://doi.org/10.1007/978-3-030-38610-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38610-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38609-2

  • Online ISBN: 978-3-030-38610-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics