Skip to main content

What is this Monograph About?

  • Chapter
  • First Online:
Architecting Networked Engineered Systems

Abstract

The Industry 4.0 construct is characterized by a digital model of end-to-end supply chain, all the manufacturing processes and provides a mechanism to transfer autonomy from the physical realm to the cyber-physical realm. Central to the implementation of the Industry 4.0 construct is the concept of the ‘Digital Twin’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J. K., Seepersad, C. C., Choi, H.-J., & Mistree, F. (2006). A survey of robust design with applications to multidisciplinary and multiscale systems. Journal of Mechanical Design, 128(4), 832–843.

    Article  Google Scholar 

  • Allen, J. K., Azarm, S., & Simpson, T. W. (2011). Design complex engineering systems. Journal of Mechanical Design, 133, 10.

    Google Scholar 

  • Anapagaddi, R., Shukla, R., Goyal, S., Singh, A. K., Allen, J. K., Panchal, J. H., & Mistree, F., (2014). Exploration of the design space in continuous casting tundish. In ASME design Automation Conference. New York: Buffalo. Paper Number DETC2014-34254.

    Google Scholar 

  • Assink, M. (2006). Inhibitors of disruptive innovation capability: A conceptual model. European Journal of Innovation Management, 9(2), 215–233.

    Article  Google Scholar 

  • Benner, M. J., & Tushman, M. L. (2003). Exploitation, exploration, and process management: The productivity dilemma revisited. Academy of Management Review, 28, 238–256.

    Article  Google Scholar 

  • Bers, J. A., Dismukes, J. P., Miller, L. K., & Dubrovensky, A. (2009). Accelerated radical innovation: Theory and application. Technological Forecasting and Social Change, 76(1), 165–177.

    Article  Google Scholar 

  • Buede, D. M. (2000). The engineering design of systems: Models and methods. New York: Wiley.

    Google Scholar 

  • Cagan, J., & Williams, B. C. (1993). First order necessary conditions for robust optimality. ASME advances in design automation (pp. 539–549). NM: Albuquerque.

    Google Scholar 

  • Carryer, J. E., Ohline, R. M., & Kenny, T. W. (2011). Introduction to mechatronic design. US: Prentice-Hall.

    Google Scholar 

  • Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N. V., et al. (2011). Computer-based design synthesis research: An overview. Journal of Computing and Information Science in Engineering, 11(2), 021003.

    Article  Google Scholar 

  • Chen, W., & Lewis, K. (1999). A robust design approach for achieving flexibility in multidisciplinary design. AIAA Journal, 37(8), 982–989.

    Article  Google Scholar 

  • Chen, W., Meher-Homji, C. B., & Mistree, F. (1994). Compromise: An effective approach for condition-based maintenance management of gas turbines. Engineering Optimization, 22(3), 185–201.

    Article  Google Scholar 

  • Chen, W., Allen, J. K., Tsui, K.-L., & Mistree, F. (1996). A procedure for robust design: Minimizing variations caused by noise factors and control factors. Journal of Mechanical Design, 118(4), 478–485.

    Article  Google Scholar 

  • Chen, W., Allen, J. K., & Mistree, F. (1997). The robust concept exploration method for enhancing concurrent systems design. Journal of Concurrent Engineering: Research and Applications, 5(3), 203–217.

    Article  Google Scholar 

  • Choi, H.-J. (2005). A robust design method for model and propagated uncertainty. Ph.D. Dissertation. Atlanta, GA: The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008a). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.

    Article  Google Scholar 

  • Choi, H.-J., McDowell, D. L., Allen, J. K., & Mistree, F. (2008b). An inductive design exploration method for hierarchical systems design under uncertainty. Engineering Optimization, 40(4), 287–307.

    Article  Google Scholar 

  • Collopy, P. D., & Hollingsworth, P. M. (2011). Value-driven design. Journal of Aircraft, 48(3), 749–759.

    Article  Google Scholar 

  • Condoor, S., & LaVoie, D. (2007). Design fixation: A cognitive model. In International Conference on Engineering Design, no. 507, Paris, France.

    Google Scholar 

  • Ding, Y., Ceglarek, D., & Shi, J. (2002). Design evaluation of multi-station assembly processes by using state space approach. ASME Journal of Mechanical Design, 124(3), 408–418.

    Article  Google Scholar 

  • Du, X., & Chen, W. (2000). Towards a better understanding of modeling feasibility robustness in engineering design. Journal of Mechanical Design, 122(4), 385–394.

    Article  Google Scholar 

  • Georgescu, C., & Boonstra, V. F. (1990). Concept exploration models for merchant ships. In TRB, 99th Annual Meeting, Washington, D.C.

    Google Scholar 

  • Giunta, A. A. (1997). Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. Doctoral Dissertation. Blacksburg, VA: Virginia Tech.

    Google Scholar 

  • Gu, X. S., Renaud, J. E., & Penninger, C. L. (2006). Implicit uncertainty propagation for robust collaborative optimization. Journal of Mechanical Design, 128(4), 1001–1013.

    Article  Google Scholar 

  • Haftka, R. T. (1985). Simultaneous analysis and design. AIAA Journal, 23(7), 1099–1103.

    Article  MATH  Google Scholar 

  • Hernandez, G., & Mistree, F. (2000). Integrating product design and manufacturing: A game theoretic approach. Engineering Optimization, 32(6), 749–775.

    Article  Google Scholar 

  • Jin, J., & Shi, J. (1999). State space modeling of sheet metal assembly for dimensional control. Journal of Manufacturing Science and Engineering, 121(4), 756–762.

    Article  Google Scholar 

  • Koch, P., Barlow, A., Allen, J., & Mistree, F. (1998). Facilitating concept exploration for configuring turbine propulsion systems. Journal of Mechanical Design, 120(4), 702–706.

    Article  Google Scholar 

  • Kroo, I., Altus, S., Braun, R., Gage, P., & Sobieski, J. (1994). Multidisciplinary optimization methods for aircraft preliminary design. In 5th Symposium on Multidisciplinary Analysis and Optimization Conference (p. 4325). AIAA.

    Google Scholar 

  • Lewis, K., Smith, W. F., & Mistree, F. (1999). Ranged set of top-level specifications for complex engineering systems. In U. Roy, J. M. Usher, & H. R. Parsaei (Eds.), Simultaneous engineering: Methodologies and applications (pp. 279–303). New York: Gordon and Breach Science Publishers.

    Google Scholar 

  • Linsey, J. S., Tseng, I., Fu, K., Cagan, J., Wood, K. L., & Schunn, C. (2010). A study of design fixation, its mitigation and perception in engineering design faculty. Journal of Mechanical Design, 132(4), 041003.

    Article  Google Scholar 

  • Luger, G. F., & Stubblefield, W. A. (1990). Artificial intelligence and the design of expert systems. Benjamin-Cummings Publishing Co., Inc.

    Google Scholar 

  • Magnusson, T., Lindström, G., & Berggren, C. (2003). Architectural or modular innovation? Managing discontinuous product development in response to challenging environmental performance targets. International Journal of Innovation Management, 7(1), 1–26.

    Article  Google Scholar 

  • Marston, M., Allen, J. K., & Mistree, F. (2000). The decision support problem technique: Integrating descriptive and normative approaches in decision based design. Engineering Valuation and Cost Analysis, 3(2), 107–129.

    Google Scholar 

  • Mavris, D. N., Bandte, O., & DeLaurentis, D. A. (1999). Robust design simulation: A probabilistic approach to multidisciplinary design. Journal of Aircraft, 36(1), 298–307.

    Article  Google Scholar 

  • McDowell, D. L., Panchal, J., Choi, H.-J., Seepersad, C., Allen, J., & Mistree, F. (2009). Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann.

    Google Scholar 

  • McDowell, D. L., Panchal, J. H., Choi, H.-J., Seepersad, C. C., Allen, J. K., & Mistree, F. (2010). Integrated design of multiscale materials and products. New York: Elsevier. ISBN-13: 978-1-85617-662-0.

    Google Scholar 

  • Milisavljevic, J., Commuri, S., Allen, J. K., & Mistree, F. (2018). Steady-state operability in design for dynamic management in realization of networked engineering systems. In ASME Design for Manufacturing and Assembly Conference. Quebec City, Quebec, Canada. Paper Number DETC2018–85864.

    Google Scholar 

  • Milisavljevic-Syed, J., Allen, J. K., Commuri, S., & Mistree, F. (2018). A method for the concurrent design and analysis of networked manufacturing systems under uncertainty. Engineering Optimization, 51(4), 699–717.

    Article  Google Scholar 

  • Milisavljevic-Syed, J., Allen, J. K., Commuri, S., & Mistree, F. (2019a). Designing smart networked manufacturing systems (pp. 25–26). Future Steel Forum 2019, Budapest, Hungary.

    Google Scholar 

  • Milisavljevic-Syed, J., Allen, J. K., Commuri, S., & Mistree, F. (2019b). Design of networked manufacturing systems for industry 4.0. In 52nd CIRP Conference on Manufacturing Systems. Ljubljana, Slovenia, June 12–14, 2019. Paper Number PROCIR-D-18-00262.

    Google Scholar 

  • Mistree, F., Smith, W. F., Bras, B., Allen, J. K., & Muster, D. (1990). Decision-based design: A contemporary paradigm for ship design. Transactions SNAME, 98, 565–597.

    Google Scholar 

  • Mistree, F., Smith, W. F., Kamal, S. Z., & Bras, B. A. (1991). Designing Decisions: Axioms, Models and Marine Applications (Invited Lecture). In Fourth International Marine Systems Design Conference (IMSDC91) (pp. 1–24). Kobe, Japan: Society of Naval Architects of Japan.

    Google Scholar 

  • Mistree, F., Lautenschlager, U., Erikstad, S. O., & Allen, J. K. (1993). Simulation reduction using the Taguchi method. NASA STI/Recon Technical Report N, 94, 17082.

    Google Scholar 

  • Mistree, F., Bras, B., Smith, W. F., & Allen, J. (1995). Modelling design processes: A conceptual, decision-based perspective. International Journal of Engineering Design and Automation, 1(4), 209–221.

    Google Scholar 

  • Monostori, L. (2014). Cyber-physical manufacturing systems: Roots, expectations and R&D challenges, in variety management in manufacturing. In 47th CIRP Conference on Manufacturing Systems (pp. 9–13). Procedia CIRP 17, 2014.

    Google Scholar 

  • Muster, D., & Mistree, F. (1988). The decision support problem technique in engineering design. The International Journal of Applied Engineering Education, 4(1), 23–33.

    Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology. New York: A Wiley Interscience Publication.

    MATH  Google Scholar 

  • Nair, V. N. (1992). Taguchi’s parameter design: A panel discussion. Technometrics, 34, 127–161.

    Article  MathSciNet  Google Scholar 

  • Ottino, J. M. (2004). Engineering complex systems. Nature, 427(6973), 399.

    Article  Google Scholar 

  • Otto, K. N., & Antonson, E. K. (1993a). Extensions to the Taguchi method for of product design. ASME Journal of Mechanical Design, 115(1), 5–13.

    Article  Google Scholar 

  • Otto, K. N., & Antonson, E. K. (1993b). Design theory and methodology—DTM’93. In T. K. Hight, L. A. Stauffer, & H. R. Parsaei (Eds.), The method of imprecision compared to utility theory for design selection problems (Vol. 53, pp. 167–173). New York: ASME.

    Google Scholar 

  • Pahl, G., Beltz, W., Feldhusen, J., & Grote, K. H. (2013). Engineering design: A systematic approach. Berlin: Springer Science and Business Media.

    Google Scholar 

  • Panchal, J. H., Choi, H.-J., Allen, J. K., McDowell, D. L., & Mistree, F. (2007). A systems-based approach for integrated design of materials, products and design process chains. Journal of Computer-Aided Materials Design, 14(1), 265–293.

    Article  Google Scholar 

  • Parkinson, A., Sorenson, C., & Pourhassen, N. (1993). A general approach for robust optimal design. ASME Journal of Mechanical Design, 115(1), 74–80.

    Article  Google Scholar 

  • Renaud, J. E. (1997). Automatic differentiation in robust optimization. AIAA Journal, 35(6), 1072–1079.

    Article  MATH  Google Scholar 

  • Ross, A. M., & Hastings, D. E. (2005). The trade space exploration paradigm. In INCOSE 2005 International Symposium.

    Google Scholar 

  • Russom P. (2011). Big data analytics. TDWI Best Practices Report. https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf. Last accessed May 18, 2019.

  • Seepersad, C. C., Hernandez, G., & Allen, J. K. (2000). A quantitative approach to determining product platform extent. In ASME Advances in Design Automation Conference. Baltimore, MD. Paper Number DETC2000/DAC-14288.

    Google Scholar 

  • Seepersad, C. C., Allen, J. K., McDowell, D. L., & Mistree, F. (2006). Robust design of cellular materials with topological and dimensional imperfections. Journal of Mechanical Design, 128(6), 1285–1297.

    Article  Google Scholar 

  • Shi, J. (2006). Stream of variation modeling and analysis for multistage manufacturing processes. Taylor and Francis Group, London, UK: CRC Press.

    Book  Google Scholar 

  • Shukla, R., Anapagaddi, R., Singh, A. K., Panchal, J. H., Allen, J. K., & Mistree, F. (2015). Exploring the design set points of refining operation in ladle for cost effective desulfurization and inclusion removal. In ASME Design Automation Conference, Boston, MA, Paper Number DETC2015-46265.

    Google Scholar 

  • Siddall, J. (1984). A new approach to probability in engineering design and optimization. Journal of Mechanisms, Transmissions, and Automation in Design, 106(1), 5–10.

    Article  Google Scholar 

  • Simon, H. A. (1980). Cognitive science: The newest science of the artificial. Cognitive Science, 4(1), 33–46.

    Article  Google Scholar 

  • Simpson, T. W., Chen, W., Allen, J. K., & Mistree, F. (1998). Use of the robust concept exploration method to facilitate the design of a family of products, simultaneous engineering: Methodologies and applications. In U. Roy, J. M. Usher, & H. P. Parsaei (Eds.), Simultaneous engineering: Methodologies and applications. London, UK: Chapman and Hall.

    Google Scholar 

  • Simpson, T. W., Maier, J. R., & Mistree, F. (2001a). Product platform design: Method and application. Research in Engineering Design, 13(1), 2–22.

    Article  Google Scholar 

  • Simpson, T. W., Seepersad, C. C., & Mistree, F. (2001b). Balancing commonality and performance within the concurrent design of multiple products in a product family. Concurrent Engineering, 9(3), 177–190.

    Article  Google Scholar 

  • Sinha, A., Bera, N., Allen, J. K., Panchal, J. H., & Mistree, F. (2013). Uncertainty management in the design of multiscale systems. Journal of Mechanical Design, 135(1), 011008.

    Article  Google Scholar 

  • Smith, W. F. (1993). The modeling and exploration of ship systems in the early stages of decision-based design. Ph.D. Dissertation. Department of Mechanical Engineering, University of Houston, Houston, TX.

    Google Scholar 

  • Smith W. F., Milisavljevic, J., Sabeghi, M., Allen, J. K. & Mistree, F. (2014). Accounting for uncertainty and complexity in the realization of engineered systems (pp. 195–211). CSDM.

    Google Scholar 

  • Sobieszczanski-Sobieski, J. (1988). Optimization by decomposition: A step from hierarchic to non-hierarchic systems. NASA Technical Report 19810004052.

    Google Scholar 

  • Steltzner, A., Kipp, D., Chen, A., Burkhart, D., Guernsey, C., Mendeck, G., & Way, D. (2006). Mars science laboratory entry, descent, and landing system. In Aerospace Conference, IEEE, U.S.A.

    Google Scholar 

  • Taguchi, G. (1993). Taguchi on robust technology development: Bringing quality engineering upstream. New York: ASME Press.

    Book  Google Scholar 

  • Tatikonda, M. V., & Rosenthal, S. R. (2000). Technology novelty, project complexity and product development project execution success. IEEE Transactions on Engineering Management, 47(1), 74–87.

    Article  Google Scholar 

  • Tsui, K.-L. (1992). An overview of Taguchi methods and newly developed statistical methods for robust design. IIE Transactions, 24(5), 44–57.

    Article  Google Scholar 

  • Tsui, K.-L. (1996). A critical look at Taguchi’s modeling approach for robust design. Journal of Applied Statistics, 23(1), 81–95.

    Article  MathSciNet  Google Scholar 

  • Vajna, S., Clement, S., Jordan, A., & Bercsey, T. (2005). The autogenetic design theory: An evolutionary view of the design process. Journal of Engineering Design, 16(4), 423–440.

    Article  Google Scholar 

  • Veryzer, R. W. (1998). Discontinuous innovation and the new product development process. Journal Product Innovation Management, 15, 304–321.

    Article  Google Scholar 

  • Wagner, T. C. (1993). A general decomposition methodology for optimal system design. Ph.D. Dissertation. University of Michigan, 9319649.

    Google Scholar 

  • Wang, G., Shang, X., Yan, Y., Allen, J. K., & Mistree, F. (2018). A tree-based decision method for the configuration design of reconfigurable machine tools. Journal of Manufacturing Systems, 149, 143–169.

    Article  Google Scholar 

  • Wang, R., Wang, G., Yan, Y., Sabeghi, M., Ming, Z., Allen, J. K., et al. (2019). Ontology-based representation of meta-design in designing decision workflows. Journal of Computing and Information Science in Engineering, 19(1), 011003.

    Article  Google Scholar 

  • Weigel, A. L., & Hastings, D. E. (2004). Evaluating the cost and risk impacts of launch choices. Journal of Spacecraft and Rockets, 41(1), 103–110.

    Article  Google Scholar 

  • Williams, T. M. (1999). The need for new paradigms for complex projects. International Journal of Project Management, 17(5), 269–273.

    Article  Google Scholar 

  • Wujek, B. A., Renaud, J. E., Batill, S. M., & Brockman, J. B. (1996). Concurrent subspace optimization using design variable sharing in a distributed computing environment. Concurrent Engineering, 4(4), 361–377.

    Article  Google Scholar 

  • Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Manufacturing Research, 56(8), 2941–2962.

    Google Scholar 

  • Yu, J. C. (1994). Robust design by matching the design with manufacturing variation pattern. In Advances in Design Automation-Proceedings of the 20th Annual ASME Design Automation Conference.

    Google Scholar 

  • Zhong, J. (2009). Manufacturing system variation reduction through feed-forward control considering model uncertainties. Dissertation. University of Michigan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Milisavljevic-Syed .

Glossary

ACRONES

Adaptable Concurrent Realization of Networked Engineering Systems

Big-data Analytics

Analysis of large volumes of data

cDSP

Compromise Decision Support Problem

Connectivity between the elements in the system

Enabling distinct and independent processes to communicate with one another through well-defined protocols and strategies

DFDM

Design for Dynamic Management

DSIDES

Software for solving Decision Support Problems (DSPs)

DSP

Decision Support Problem

Flexibility

Selection and determination of design parameters at design time to address the issue of fault-tolerance in the manufacturing process

Internet of Things (IoT)/Smart Sensing

Convergence of systems and Internet Technology and allows ‘stand-alone’ systems to be networked

KPC

Key Product Characteristics

MDO

Multidisciplinary Design Optimization

MMP

Multistage Manufacturing Process

NES

Networked Engineered Systems

NMS

Networked Manufacturing Systems

PT

Programmable tooling

Resilience

Ability of a system to withstand disruptions

Robustness

Ability of the system to meet design specifications for the output when the system experiences faults or when the parameters of the system are unknown/varying

Smart Manufacturing

Digitized Manufacturing

SoV

Stream of Variation model

Uncertainty

Inherent randomness or unpredictability of a system, model parameters uncertainty, and model structure uncertainty.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milisavljevic-Syed, J., Allen, J.K., Commuri, S., Mistree, F. (2020). What is this Monograph About?. In: Architecting Networked Engineered Systems . Springer, Cham. https://doi.org/10.1007/978-3-030-38610-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38610-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38609-2

  • Online ISBN: 978-3-030-38610-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics