Skip to main content

An Experimental Study of Univariate Global Optimization Algorithms for Finding the Shape Parameter in Radial Basis Functions

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1145))

Abstract

In this contribution, an interpolation problem using radial basis functions is considered. A recently proposed approach for the search of the optimal value of the shape parameter is studied. The approach consists of using global optimization algorithms to minimize the error function obtained using a leave-one-out cross validation (LOOCV) technique, which is commonly used for solving machine learning problems. In this paper, the proposed approach is studied experimentally on classes of randomly generated test problems using the GKLS-generator, which is widely used for testing global optimization algorithms. The experimental study on classes of randomly generated test problems is very important from the practical point of view, since results show the behavior of the algorithms for solving not a single test problem, but the whole class with controllable difficulty, which is the main property of the GKLS-generator. The obtained results are relevant, since the experiments have been carried out on 200 randomized test problems, and show that the algorithms are efficient for solving difficult real-life problems demonstrating a promising behavior.

The work of M. S. Mukhametzhanov was supported by the project “Smart Electronic Invoices Accounting” - SELINA CUP: J28C17000160006 (POR CALABRIA FESR-FSE 2014–2020) and by the INdAM-GNCS funding “Giovani Ricercatori 2018–2019”. The work of R. Cavoretto and A. De Rossi was partially supported by the Department of Mathematics “Giuseppe Peano” of the University of Torino via Project 2019 “Mathematics for applications” and by the INdAM–GNCS Project 2019 “Kernel-based approximation, multiresolution and subdivision methods and related applications”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Traditionally, terms “simple” and “difficult” are related to the difficulty of locating the global minimizer and are used for testing global optimization algorithms and not interpolation methods. In this paper, these terms are used only to distinguish these two classes and not to indicate the difficulty of the interpolation problem.

References

  1. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) AIP Conference Proceedings, vol. 1738, p. 400006 (2016)

    Google Scholar 

  2. Barkalov, K., Strongin, R.: Solving a set of global optimization problems by the parallel technique with uniform convergence. J. Global Optim. 71(1), 21–36 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching procedure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cavoretto, R., De Rossi, A., Mukhametzhanov, M.S., Sergeyev, Y.D.: On the search of the shape parameter in radial basis functions using univariate global optimization methods. J. Glob. Optim. (2019, in press). https://doi.org/10.1007/s10898-019-00853-3

  5. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

    Book  Google Scholar 

  6. Fasshauer, G.E.: Positive definite kernels: past, present and future. Dolomites Res. Notes Approx. 4, 21–63 (2011)

    Google Scholar 

  7. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Article  MathSciNet  Google Scholar 

  9. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)

    Article  Google Scholar 

  10. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of surface defects of cold-rolling sheets based on method of localities. Int. Rev. Autom. Control 8(1), 51–55 (2015)

    Google Scholar 

  11. Gillard, J.W., Zhigljavsky, A.A.: Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 70–88 (2015)

    Article  MathSciNet  Google Scholar 

  12. Golbabai, A., Mohebianfar, E., Rabiei, H.: On the new variable shape parameter strategies for radial basis functions. Comput. Appl. Math. 34, 691–704 (2015)

    Article  MathSciNet  Google Scholar 

  13. Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Global Optim. 10(2), 185–206 (1997)

    Article  MathSciNet  Google Scholar 

  15. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  16. Khamisov, O.V., Posypkin, M.: Univariate global optimization with point-dependent Lipschitz constants. In: AIP Conference Proceedings, vol. 2070, p. 020051. AIP Publishing (2019)

    Google Scholar 

  17. Khamisov, O., Posypkin, M., Usov, A.: Piecewise linear bounding functions for univariate global optimization. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds.) OPTIMA 2018. CCIS, vol. 974, pp. 170–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_13

    Chapter  Google Scholar 

  18. Kvasov, D.E., Mukhametzhanov, M.S.: One-dimensional global search: nature-inspired vs. Lipschitz methods. In: Simos, T.E. (ed.) AIP Conference Proceedings, vol. 1738, p. 400012 (2016)

    Google Scholar 

  19. Kvasov, D.E., Mukhametzhanov, M.S.: Metaheuristic vs. deterministic global optimization algorithms: the univariate case. Appl. Math. Computat. 318, 245–259 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra Control Optim. 2(1), 69–90 (2012)

    Article  MathSciNet  Google Scholar 

  21. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9093-7

    Book  MATH  Google Scholar 

  22. Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972). (in Russian) Zh. Vychisl. Mat. Mat. Fiz. 12(4), pp. 888–896 (1972)

    Google Scholar 

  23. Ratz, D.: A nonsmooth global optimization technique using slopes: the one-dimensional case. J. Global Optim. 14(4), 365–393 (1999)

    Article  MathSciNet  Google Scholar 

  24. Rippa, S.: An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  Google Scholar 

  25. Sergeyev, Y.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization problems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)

    Article  MathSciNet  Google Scholar 

  26. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  Google Scholar 

  27. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the least-squares fitting of data by sinusoids. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization. SOIA, vol. 107, pp. 209–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29975-4_11

    Chapter  Google Scholar 

  28. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Emmental-type GKLS-based multiextremal smooth test problems with non-linear constraints. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 383–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_35

    Chapter  Google Scholar 

  29. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms. Math. Comput. Simul. 141, 96–109 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun. Nonlinear Sci. Numer. Simul. 59, 319–330 (2018)

    Article  MathSciNet  Google Scholar 

  31. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 8, 453 (2018)

    Article  Google Scholar 

  32. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  33. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). 3rd ed. by Springer (2014)

    Chapter  Google Scholar 

  34. Uddin, M.: On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method. Appl. Math. Model. 38, 135–144 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008). https://doi.org/10.1007/978-0-387-74740-8

    Book  MATH  Google Scholar 

  36. Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Global Optim. 48(1), 173–182 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat S. Mukhametzhanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukhametzhanov, M.S., Cavoretto, R., De Rossi, A. (2020). An Experimental Study of Univariate Global Optimization Algorithms for Finding the Shape Parameter in Radial Basis Functions. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2019. Communications in Computer and Information Science, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-38603-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38603-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38602-3

  • Online ISBN: 978-3-030-38603-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics