Skip to main content

A Modern Guide to Quantitative Spectroscopy of Massive OB Stars

  • Chapter
  • First Online:
Book cover Reviews in Frontiers of Modern Astrophysics

Abstract

Quantitative spectroscopy is a powerful technique from which we can extract information about the physical properties and surface chemical composition of stars. In this chapter, I guide the reader through the main ideas required to get initiated in the learning process to become an expert in the application of state-of-the-art quantitative spectroscopic techniques to the study of massive OB stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By D. Jones, J. García-Rojas and Petr Kabáth (co-PI’s of the ERASMUS+ project “Per aspera ad astra simul”).

  2. 2.

    This diagram can be considered as an equivalent to the HRD, but only using stellar parameters derived spectroscopically (see also [18]).

  3. 3.

    Poelarends et al. [22] propose a fiducial value of 9 M for the minimum initial mass of massive stars at solar metallicity, where massive star is defined as a star that is massive enough to form a collapsing core at the end of its life and, thus, avoid the while dwarf fate [23].

  4. 4.

    Actually, it is not yet completely clear whether the group of stars marked as B supergiants (B Sgs) are post-MS stars, MS stars or, even, some of them are post red supergiant stars (see Section 6.1 in [23] and references therein).

  5. 5.

    Due to their high temperatures and luminosities, OB stars are sometimes also quoted as blue massive stars, and the O and B supergiants, as blue supergiants.

  6. 6.

    For example, N iii–iv–v and Si iv–iii–ii lines in the early-O and the early-B stars, respectively (see Sect. 3.4).

  7. 7.

    Also, different implementations of the associated model atoms—including a more or less detailed description of the energy levels and transitions of specific ions—are required.

  8. 8.

    For this type of stars, the Gaia RVs range is basically populated by a few Paschen lines.

  9. 9.

    Corresponding to the transitions N vλλ1239/43 Å, Si ivλλ1394/403 Å, and C ivλλ1548/51 Å.

  10. 10.

    Most of the ideas presented along this section can be easily extrapolated to any quantitative spectroscopic analysis of the UV and IR spectral windows, with the only difference that other diagnostic lines, model atoms, and physical assumptions in the modeling of the stellar wind must be considered. Also some parameters and abundances may be more difficult (or even impossible in some cases) to be constrained just using the UV and/or IR part of the spectrum.

  11. 11.

    Linear Stark broadening mainly affect the wings of the H and, to a less extent, the He ii lines; indeed, this effect is mainly used to constrain the surface gravity (see Sect. 3.6).

  12. 12.

    Quadratic Stark broadening, which is much less pronounced than the linear one, mainly affects the shape of the He i lines.

  13. 13.

    Into the line-of-sight.

  14. 14.

    The most common value used for A is 0.660, which corresponds to a limb-darkening coefficient of 𝜖 = 0.6 (see, however, Fig. 3 in [101]).

  15. 15.

    With the same equivalent width as the observed profile.

  16. 16.

    In many cases, a stellar atmosphere code includes the computation of the emergent spectrum.

  17. 17.

    Model atoms—including information about energy levels and the main collisional and radiative transitions between levels and/or the continuum—are a very important ingredient of stellar atmosphere code. They will be only occasionally mentioned along this chapter; however, basic knowledge of how models atoms are implemented and used in stellar atmosphere and diagnostic codes is the forth pillar a quantitative stellar spectroscopist should dominate, along with basic concepts of observational stellar spectroscopy, radiative transfer and stellar atmosphere modeling.

  18. 18.

    http://nova.astro.umd.edu.

  19. 19.

    http://kookaburra.phyast.pitt.edu/hillier/web/CMFGEN.htm.

  20. 20.

    http://www.astro.physik.uni-potsdam.de/~wrh/PoWR/powrgrid1.php.

  21. 21.

    log Q = log \({\dot {M}}\) – 1.5 log R – 1.5 log v [121]. This parameter is used as a proxy of the wind properties in the optical analyses because this spectral window does not include any diagnostic line reacting exclusively (or mainly) to the mass-loss rate (\({\dot {M}}\)) or the wind terminal velocity (v ).

  22. 22.

    iacob-gbat [69] is a grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.

  23. 23.

    Microturbulence (ξ t) is a free parameter that was included in the stellar abundance analyses to solve the discrepancy found in the line abundances from weak and strong lines. Its physical meaning is supposed to be related to the small scale turbulent motions of the stellar plasma which could mainly affect the strong lines close to saturation.

  24. 24.

    This is the case for the spectral synthesis method, where the effect of microturbulence or the existence of wrongly modeled lines (see [82]) is not so easily identified.

  25. 25.

    Either directly or by using equivalent widths of a selected sample of diagnostic lines.

  26. 26.

    For example, effective temperature and surface gravity, abundance and microturbulence, mass loss rate and the β parameter.

References

  1. S. Daflon, K. Cunha, Astrophys. J. 617(2), 1115 (2004). https://doi.org/10.1086/425607

    Article  ADS  Google Scholar 

  2. G.A. Bragança, S. Daflon, T. Lanz, K. Cunha, T. Bensby, P.J. McMillan, C.D. Garmany, J.W. Glaspey, M. Borges Fernandes, M.S. Oey, I. Hubeny, Astron. Astrophys. 625, A120 (2019). https://doi.org/10.1051/0004-6361/201834554

    Article  ADS  Google Scholar 

  3. H. Bouy, J. Alves, Astron. Astrophys. 584, A26 (2015). https://doi.org/10.1051/0004-6361/201527058

    Article  ADS  Google Scholar 

  4. M. Mohr-Smith, J.E. Drew, R. Napiwotzki, S. Simón-Díaz, N.J. Wright, G. Barentsen, J. Eislöffel, H.J. Farnhill, R. Greimel, M. Monguió, V. Kalari, Q.A. Parker, J.S. Vink, Mon. Not. R. Astron. Soc. 465(2), 1807 (2017). https://doi.org/10.1093/mnras/stw2751

    Article  ADS  Google Scholar 

  5. D. Russeil, C. Adami, J.C. Bouret, A. Hervé, Q.A. Parker, A. Zavagno, F. Motte, Astron. Astrophys. 607, A86 (2017). https://doi.org/10.1051/0004-6361/201629870

    Article  ADS  Google Scholar 

  6. M. Garcia, A. Herrero, F. Najarro, D.J. Lennon, M. Alejandro Urbaneja, Astrophys. J. 788(1), 64 (2014). https://doi.org/10.1088/0004-637X/788/1/64

    Article  ADS  Google Scholar 

  7. I. Camacho, M. Garcia, A. Herrero, S. Simón-Díaz, Astron. Astrophys. 585, A82 (2016). https://doi.org/10.1051/0004-6361/201425533

    Article  ADS  Google Scholar 

  8. M.S. Oey, J. Dorigo Jones, N. Castro, P. Zivick, G. Besla, H.C. Januszewski, M. Moe, N. Kallivayalil, D.J. Lennon, Astrophys. J. Lett. 867(1), L8 (2018). https://doi.org/10.3847/2041-8213/aae892

    Article  ADS  Google Scholar 

  9. P. Degroote, Asteroseismology of OB stars with the Corot Space mission. Ph.D. Thesis, Institute of Astronomy, Katholieke Universiteit Leuven, Belgium, 2010

    Google Scholar 

  10. F. Najarro, M.M. Hanson, J. Puls, Astron. Astrophys. 535, A32 (2011). https://doi.org/10.1051/0004-6361/201016003

    Article  ADS  Google Scholar 

  11. N. Przybilla, M.F. Nieva, M. Firnstein, K. Butler, in EAS Publications Series, vol. 64, ed. by K. Pavlovski, A. Tkachenko, G. Torres (2013), pp. 37–45. https://doi.org/10.1051/eas/1364005

  12. G.A. Wade, J. Grunhut, E. Alecian, C. Neiner, M. Aurière, D.A. Bohlender, A. David-Uraz, C. Folsom, H.F. Henrichs, O. Kochukhov, S. Mathis, S. Owocki, V. Petit, Petit, in Magnetic Fields throughout Stellar Evolution, IAU Symposium, vol. 302, ed. by P. Petit, M. Jardine, H.C. Spruit (2014), pp. 265–269. https://doi.org/10.1017/S1743921314002233

  13. L. Fossati, N. Castro, M. Schöller, S. Hubrig, N. Langer, T. Morel, M. Briquet, A. Herrero, N. Przybilla, H. Sana, F.R.N. Schneider, A. de Koter, BOB Collaboration, Astron. Astrophys. 582, A45 (2015). https://doi.org/10.1051/0004-6361/201526725

    Article  ADS  Google Scholar 

  14. S. Simón-Díaz, C. Aerts, M.A. Urbaneja, I. Camacho, V. Antoci, M. Fredslund Andersen, F. Grundahl, P.L. Pallé, Astron. Astrophys. 612, A40 (2018). https://doi.org/10.1051/0004-6361/201732160

    Article  ADS  Google Scholar 

  15. L. Hennicker, J. Puls, N.D. Kee, J.O. Sundqvist, Astron. Astrophys. 616, A140 (2018). https://doi.org/10.1051/0004-6361/201731858

    Article  ADS  Google Scholar 

  16. W.W. Morgan, Publ. Mich. Obs. 10, 33 (1951)

    ADS  Google Scholar 

  17. R.O. Gray, J.C. Corbally, Stellar Spectral Classification (Princeton University Press, Princeton, 2009)

    Google Scholar 

  18. N. Langer, R.P. Kudritzki, Astron. Astrophys. 564, A52 (2014). https://doi.org/10.1051/0004-6361/201423374

    Article  ADS  Google Scholar 

  19. G. Holgado, Spectroscopic and physical characterization of the Galactic O-type stars targeted by the IACOB and OWN surveys. Ph.D. Thesis, 2019

    Google Scholar 

  20. N. Castro, L. Fossati, N. Langer, S. Simón-Díaz, F.R.N. Schneider, R.G. Izzard, Astron. Astrophys. 570, L13 (2014). https://doi.org/10.1051/0004-6361/201425028

    Article  ADS  Google Scholar 

  21. S. Ekström, C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach, A. Granada, T. Decressin, R. Hirschi, U. Frischknecht, C. Charbonnel, A. Maeder, Astron. Astrophys. 537, A146 (2012). https://doi.org/10.1051/0004-6361/201117751

    Article  ADS  Google Scholar 

  22. A.J.T. Poelarends, F. Herwig, N. Langer, A. Heger, Astrophys. J. 675(1), 614 (2008). https://doi.org/10.1086/520872

    Article  ADS  Google Scholar 

  23. N. Langer, Annu. Rev. Astron. Astrophys. 50, 107 (2012). https://doi.org/10.1146/annurev-astro-081811-125534

    Article  ADS  Google Scholar 

  24. R.P. Kudritzki, J. Puls, Annu. Rev. Astron. Astrophys. 38, 613 (2000). https://doi.org/10.1146/annurev.astro.38.1.613

    Article  ADS  Google Scholar 

  25. B.G. Elmegreen, C.J. Lada, Astrophys. J. 214, 725 (1977). https://doi.org/10.1086/155302

    Article  ADS  Google Scholar 

  26. T. Preibisch, H. Zinnecker, in Triggered Star Formation in a Turbulent ISM, IAU Symposium, vol. 237, ed. by B.G. Elmegreen, J. Palous (2007), pp. 270–277. https://doi.org/10.1017/S1743921307001597

  27. N. Prantzos, in EAS Publications Series, vol. 32, ed. by C. Charbonnel, J.P. Zahn (2008), pp. 311–356. https://doi.org/10.1051/eas:0832009

  28. G. Tenorio-Tagle, C. Muñoz-Tuñón, E. Pérez, S. Silich, E. Telles, Astrophys. J. 643(1), 186 (2006). https://doi.org/10.1086/502644

    Article  ADS  Google Scholar 

  29. V. Bromm, N. Yoshida, L. Hernquist, C.F. McKee, Nature 459(7243), 49 (2009). https://doi.org/10.1038/nature07990

    Article  ADS  Google Scholar 

  30. B.E. Robertson, R.S. Ellis, J.S. Dunlop, R.J. McLure, D.P. Stark, Nature 468(7320), 49 (2010). https://doi.org/10.1038/nature09527

    Article  ADS  Google Scholar 

  31. S.E. Woosley, J.S. Bloom, Annu. Rev. Astron. Astrophys. 44(1), 507 (2006). https://doi.org/10.1146/annurev.astro.43.072103.150558

    Article  ADS  Google Scholar 

  32. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  33. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya, C. Affeldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O.D. Aguiar, L. Aiello, A. Ain, P. Ajith, B. Allen, G. Allen, A. Allocca, P.A. Altin, A. Amato, A. Ananyeva, S.B. Anderson, W.G. Anderson, S.V. Angelova, S. Antier, S. Appert, K. Arai, M.C. Araya, Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  34. M.A. Urbaneja, A. Herrero, F. Bresolin, R.P. Kudritzki, W. Gieren, J. Puls, N. Przybilla, F. Najarro, G. Pietrzyński, Astrophys. J. 622(2), 862 (2005). https://doi.org/10.1086/427468

    Article  ADS  Google Scholar 

  35. M.A. Urbaneja, A. Herrero, R.P. Kudritzki, F. Najarro, S.J. Smartt, J. Puls, D.J. Lennon, L.J. Corral, Astrophys. J. 635(1), 311 (2005). https://doi.org/10.1086/497528

    Article  ADS  Google Scholar 

  36. N. Castro, M.A. Urbaneja, A. Herrero, M. Garcia, S. Simón-Díaz, F. Bresolin, G. Pietrzyński, R.P. Kudritzki, W. Gieren, Astron. Astrophys. 542, A79 (2012). https://doi.org/10.1051/0004-6361/201118253

    Article  ADS  Google Scholar 

  37. M. Peimbert, Astrophys. J. 150, 825 (1967). https://doi.org/10.1086/149385

    Article  ADS  Google Scholar 

  38. G. Stasińska (2002). e-prints. arXiv:astro-ph/0207500

    Google Scholar 

  39. J. García-Rojas, C. Esteban, Astrophys. J. 670(1), 457 (2007). https://doi.org/10.1086/521871

    Article  ADS  Google Scholar 

  40. D. Alloin, W. Gieren, Stellar Candles for the Extragalactic Distance Scale, vol. 635 (Springer, Berlin, 2003). https://doi.org/10.1007/b13985

    Book  Google Scholar 

  41. R.P. Kudritzki, F. Bresolin, N. Przybilla, Astrophys. J. Lett. 582(2), L83 (2003). https://doi.org/10.1086/367690

    Article  ADS  Google Scholar 

  42. R.P. Kudritzki, M.A. Urbaneja, Astrophys. Space Sci. 341(1), 131 (2012). https://doi.org/10.1007/s10509-012-1016-7

    Article  ADS  Google Scholar 

  43. G. Stasińska, C. Leitherer, Astrophys. J. Suppl. Ser. 107, 661 (1996). https://doi.org/10.1086/192377

    Article  ADS  Google Scholar 

  44. G. Stasińska, D. Schaerer, Astron. Astrophys. 322, 615 (1997)

    ADS  Google Scholar 

  45. C. Leitherer, D. Schaerer, J.D. Goldader, R.M.G. Delgado, C. Robert, D.F. Kune, D.F. de Mello, D. Devost, T.M. Heckman, Astrophys. J. Suppl. Ser. 123(1), 3 (1999). https://doi.org/10.1086/313233

    Article  ADS  Google Scholar 

  46. K. Lefever, J. Puls, C. Aerts, Astron. Astrophys. 463(3), 1093 (2007). https://doi.org/10.1051/0004-6361:20066038

    Article  ADS  Google Scholar 

  47. J.S. Vink, I. Brott, G. Gräfener, N. Langer, A. de Koter, D.J. Lennon, Astron. Astrophys. 512, L7 (2010). https://doi.org/10.1051/0004-6361/201014205

    Article  ADS  Google Scholar 

  48. I. Brott, C.J. Evans, I. Hunter, A. de Koter, N. Langer, P.L. Dufton, M. Cantiello, C. Trundle, D.J. Lennon, S.E. de Mink, S.C. Yoon, P. Anders, Astron. Astrophys. 530, A116 (2011). https://doi.org/10.1051/0004-6361/201016114

    Article  Google Scholar 

  49. I. Brott, S.E. de Mink, M. Cantiello, N. Langer, A. de Koter, C.J. Evans, I. Hunter, C. Trundle, J.S. Vink, Astron. Astrophys. 530, A115 (2011). https://doi.org/10.1051/0004-6361/201016113

    Article  Google Scholar 

  50. F. Martins, E. Depagne, D. Russeil, L. Mahy, Astron. Astrophys. 554, A23 (2013). https://doi.org/10.1051/0004-6361/201321282

    Article  ADS  Google Scholar 

  51. F. Martins, A. Palacios, Astron. Astrophys. 560, A16 (2013). https://doi.org/10.1051/0004-6361/201322480

    Article  ADS  Google Scholar 

  52. N. Markova, J. Puls, N. Langer, Astron. Astrophys. 613, A12 (2018). https://doi.org/10.1051/0004-6361/201731361

    Article  ADS  Google Scholar 

  53. M.G. Pedersen, S. Chowdhury, C. Johnston, D.M. Bowman, C. Aerts, G. Handler, P. De Cat, C. Neiner, A. David-Uraz, D. Buzasi, A. Tkachenko, S. Simón-Díaz, E. Moravveji, J. Sikora, G.M. Mirouh, C.C. Lovekin, M. Cantiello, J. Daszyńska-Daszkiewicz, A. Pigulski, R.K. Vanderspek, G.R. Ricker, Astrophys. J. Lett. 872(1), L9 (2019). https://doi.org/10.3847/2041-8213/ab01e1

    Article  ADS  Google Scholar 

  54. D.M. Bowman, S. Burssens, M.G. Pedersen, C. Johnston, C. Aerts, B. Buysschaert, M. Michielsen, A. Tkachenko, T.M. Rogers, P.V.F. Edelmann, R.P. Ratnasingam, S. Simón-Díaz, N. Castro, E. Moravveji, B.J.S. Pope, T.R. White, P. De Cat, Nat. Astron. 3, 720 (2019). https://doi.org/10.1038/s41550-019-0768-1

    Article  ADS  Google Scholar 

  55. F. Martins, Bull. Soc. Roy. Sci. Liege 80, 29 (2011)

    ADS  Google Scholar 

  56. J.C. Bouret, D.J. Hillier, T. Lanz, A.W. Fullerton, Astron. Astrophys. 544, A67 (2012). https://doi.org/10.1051/0004-6361/201118594

    Article  Google Scholar 

  57. A. Lenorzer, M.R. Mokiem, A. de Koter, J. Puls, Astron. Astrophys. 422, 275 (2004). https://doi.org/10.1051/0004-6361:20047174

    Article  ADS  Google Scholar 

  58. M.F. Nieva, N. Przybilla, A. Seifahrt, K. Butler, H.U. Käufl, A. Kaufer, Bull. Soc. Roy. Sci. Liège 80, 175 (2011)

    ADS  Google Scholar 

  59. W.L.F. Marcolino, J.C. Bouret, T. Lanz, D.S. Maia, M. Audard, Mon. Not. R. Astron. Soc. 470(3), 2710 (2017). https://doi.org/10.1093/mnras/stx1191

    Article  ADS  Google Scholar 

  60. R.S.I. Ryans, P.L. Dufton, W.R.J. Rolleston, D.J. Lennon, F.P. Keenan, J.V. Smoker, D.L. Lambert, Mon. Not. R. Astron. Soc. 336(2), 577 (2002). https://doi.org/10.1046/j.1365-8711.2002.05780.x

    Article  ADS  Google Scholar 

  61. S. Simón-Díaz, A. Herrero, Astron. Astrophys. 468(3), 1063 (2007). https://doi.org/10.1051/0004-6361:20066060

    Article  ADS  Google Scholar 

  62. S. Simón-Díaz, A. Herrero, Astron. Astrophys. 562, A135 (2014). https://doi.org/10.1051/0004-6361/201322758

    Article  ADS  Google Scholar 

  63. G.A. Bragança, S. Daflon, K. Cunha, T. Bensby, M.S. Oey, G. Walth, Astron. J. 144(5), 130 (2012). https://doi.org/10.1088/0004-6256/144/5/130

    Article  ADS  Google Scholar 

  64. A. Herrero, R.P. Kudritzki, J.M. Vilchez, D. Kunze, K. Butler, S. Haser, Astron. Astrophys. 261, 209 (1992)

    ADS  Google Scholar 

  65. A. Herrero, M. Garcia, J. Puls, K. Uytterhoeven, F. Najarro, D.J. Lennon, J.G. Rivero-González, Astron. Astrophys. 543, A85 (2012). https://doi.org/10.1051/0004-6361/201118383

    Article  ADS  Google Scholar 

  66. T. Repolust, J. Puls, A. Herrero, Astron. Astrophys. 415, 349 (2004). https://doi.org/10.1051/0004-6361:20034594

    Article  ADS  Google Scholar 

  67. N. Markova, J. Puls, T. Repolust, H. Markov, Astron. Astrophys. 413, 693 (2004). https://doi.org/10.1051/0004-6361:20031463

    Article  ADS  Google Scholar 

  68. M.R. Mokiem, A. de Koter, J. Puls, A. Herrero, F. Najarro, M.R. Villamariz, Astron. Astrophys. 441(2), 711 (2005). https://doi.org/10.1051/0004-6361:20053522

    Article  ADS  Google Scholar 

  69. S. Simón-Díaz, N. Castro, A. Herrero, J. Puls, M. Garcia, C. Sabín-Sanjulián, J. Phys.: Conf. Ser. 328, 012021 (2011). https://doi.org/10.1088/1742-6596/328/1/012021

    Google Scholar 

  70. C. Sabín-Sanjulián, S. Simón-Díaz, A. Herrero, N.R. Walborn, J. Puls, J. Maíz Apellániz, C.J. Evans, I. Brott, A. de Koter, M. Garcia, N. Markova, F. Najarro, O.H. Ramírez-Agudelo, H. Sana, W.D. Taylor, J.S. Vink, Astron. Astrophys. 564, A39 (2014). https://doi.org/10.1051/0004-6361/201322798

    Article  ADS  Google Scholar 

  71. F. Martins, A. Hervé, J.C. Bouret, W. Marcolino, G.A. Wade, C. Neiner, E. Alecian, J. Grunhut, V. Petit, Astron. Astrophys. 575, A34 (2015). https://doi.org/10.1051/0004-6361/201425173

    Article  Google Scholar 

  72. O.H. Ramírez-Agudelo, H. Sana, A. de Koter, F. Tramper, N.J. Grin, F.R.N. Schneider, N. Langer, J. Puls, N. Markova, J.M. Bestenlehner, N. Castro, P.A. Crowther, C.J. Evans, M. García, G. Gräfener, A. Herrero, B. van Kempen, D.J. Lennon, J. Maíz Apellániz, F. Najarro, C. Sabín-Sanjulián, S. Simón-Díaz, W.D. Taylor, J.S. Vink, Astron. Astrophys. 600, A81 (2017). https://doi.org/10.1051/0004-6361/201628914

    Article  Google Scholar 

  73. G. Holgado, S. Simón-Díaz, R.H. Barbá, J. Puls, A. Herrero, N. Castro, M. Garcia, J. Maíz Apellániz, I. Negueruela, C. Sabín-Sanjulián, Astron. Astrophys. 613, A65 (2018). https://doi.org/10.1051/0004-6361/201731543

    Article  ADS  Google Scholar 

  74. J.G. Rivero González, J. Puls, F. Najarro, I. Brott, Astron. Astrophys. 537, A79 (2012). https://doi.org/10.1051/0004-6361/201117790

    Article  ADS  Google Scholar 

  75. J.G. Rivero González, J. Puls, P. Massey, F. Najarro, Astron. Astrophys. 543, A95 (2012). https://doi.org/10.1051/0004-6361/201218955

    Article  ADS  Google Scholar 

  76. N.J. Grin, O.H. Ramírez-Agudelo, A. de Koter, H. Sana, J. Puls, I. Brott, P.A. Crowther, P.L. Dufton, C.J. Evans, G. Gräfener, A. Herrero, N. Langer, D.J. Lennon, J.T. van Loon, N. Markova, S.E. de Mink, F. Najarro, F.R.N. Schneider, W.D. Taylor, F. Tramper, J.S. Vink, N.R. Walborn, Astron. Astrophys. 600, A82 (2017). https://doi.org/10.1051/0004-6361/201629225

    Article  Google Scholar 

  77. L.P. Carneiro, J. Puls, T.L. Hoffmann, Astron. Astrophys. 615, A4 (2018). https://doi.org/10.1051/0004-6361/201731839

    Article  ADS  Google Scholar 

  78. L.P. Carneiro, J. Puls, T.L. Hoffmann, G. Holgado, S. Simón-Díaz, Astron. Astrophys. 623, A3 (2019). https://doi.org/10.1051/0004-6361/201833738

    Article  ADS  Google Scholar 

  79. J. Kilian, Astron. Astrophys. 262, 171 (1992)

    ADS  Google Scholar 

  80. I. Hunter, P.L. Dufton, S.J. Smartt, R.S.I. Ryans, C.J. Evans, D.J. Lennon, C. Trundle, I. Hubeny, T. Lanz, Astron. Astrophys. 466(1), 277 (2007). https://doi.org/10.1051/0004-6361:20066148

    Article  ADS  Google Scholar 

  81. C. Trundle, P.L. Dufton, I. Hunter, C.J. Evans, D.J. Lennon, S.J. Smartt, R.S.I. Ryans, Astron. Astrophys. 471(2), 625 (2007). https://doi.org/10.1051/0004-6361:20077838

    Article  ADS  Google Scholar 

  82. S. Simón-Díaz, Astron. Astrophys. 510, A22 (2010). https://doi.org/10.1051/0004-6361/200913120

    Article  ADS  Google Scholar 

  83. M.F. Nieva, N. Przybilla, Astron. Astrophys. 539, A143 (2012). https://doi.org/10.1051/0004-6361/201118158

    Article  Google Scholar 

  84. M.F. Nieva, N. Przybilla, in The Lives and Death-Throes of Massive Stars, IAU Symposium, vol. 329, ed. by J.J. Eldridge, J.C. Bray, L.A.S. McClelland, L. Xiao (2017), pp. 81–88. https://doi.org/10.1017/S1743921317003167

  85. A. Irrgang, N. Przybilla, U. Heber, M. Böck, M. Hanke, M.F. Nieva, K. Butler, Astron. Astrophys. 565, A63 (2014). https://doi.org/10.1051/0004-6361/201323167

    Article  ADS  Google Scholar 

  86. C. Cazorla, T. Morel, Y. Nazé, G. Rauw, T. Semaan, S. Daflon, M.S. Oey, Astron. Astrophys. 603, A56 (2017). https://doi.org/10.1051/0004-6361/201629841

    Article  ADS  Google Scholar 

  87. C. Cazorla, Y. Nazé, T. Morel, C. Georgy, M. Godart, N. Langer, Astron. Astrophys. 604, A123 (2017). https://doi.org/10.1051/0004-6361/201730680

    Article  ADS  Google Scholar 

  88. P.L. Dufton, A. Thompson, P.A. Crowther, C.J. Evans, F.R.N. Schneider, A. de Koter, S.E. de Mink, R. Garland, N. Langer, D.J. Lennon, C.M. McEvoy, O.H. Ramírez-Agudelo, H. Sana, S. Símon Díaz, W.D. Taylor, J.S. Vink, Astron. Astrophys. 615, A101 (2018). https://doi.org/10.1051/0004-6361/201732440

    Article  Google Scholar 

  89. M.A. Urbaneja, R.P. Kudritzki, F. Bresolin, N. Przybilla, W. Gieren, G. Pietrzyński, Astrophys. J. 684(1), 118 (2008). https://doi.org/10.1086/590334

    Article  ADS  Google Scholar 

  90. N. Przybilla, K. Butler, S.R. Becker, R.P. Kudritzki, Astron. Astrophys. 445(3), 1099 (2006). https://doi.org/10.1051/0004-6361:20053832

    Article  ADS  Google Scholar 

  91. P.L. Dufton, R.S.I. Ryans, C. Trundle, D.J. Lennon, I. Hubeny, T. Lanz, C. Allende Prieto, Astron. Astrophys. 434(3), 1125 (2005). https://doi.org/10.1051/0004-6361:20042530

    Article  ADS  Google Scholar 

  92. N. Markova, J. Puls, Astron. Astrophys. 478(3), 823 (2008). https://doi.org/10.1051/0004-6361:20077919

    Article  ADS  Google Scholar 

  93. K. Lefever, J. Puls, T. Morel, C. Aerts, L. Decin, M. Briquet, Astron. Astrophys. 515, A74 (2010). https://doi.org/10.1051/0004-6361/200911956

    Article  ADS  Google Scholar 

  94. C.M. McEvoy, P.L. Dufton, C.J. Evans, V.M. Kalari, N. Markova, S. Simón-Díaz, J.S. Vink, N.R. Walborn, P.A. Crowther, A. de Koter, S.E. de Mink, P.R. Dunstall, V. Hénault-Brunet, A. Herrero, N. Langer, D.J. Lennon, J. Maíz Apellániz, F. Najarro, J. Puls, H. Sana, F.R.N. Schneider, W.D. Taylor, Astron. Astrophys. 575, A70 (2015). https://doi.org/10.1051/0004-6361/201425202

    Article  Google Scholar 

  95. G. Stasińska, N. Prantzos, G. Meynet, S. Simón-Díaz, C. Chiappini, M. Dessauges-Zavadsky, C. Charbonnel, H.-G. Ludwig, C. Mendoza, N. Grevesse, M. Arnould, B. Barbuy, Y. Lebreton, A. Decourchelle, V. Hill, P. Ferrando, G. Hébrard, F. Durret, M. Katsuma, C.J. Zeippen, in EAS Publications Series, vol. 54 (2012), pp. 3–63. https://doi.org/10.1051/eas/1254001

  96. J. Puls, Commun. Asteroseismol. 158, 113 (2009)

    ADS  Google Scholar 

  97. R.P. Kudritzki, M.A. Urbaneja, Parameters and Winds of Hot Massive Stars (Cambridge University Press, Cambridge, 2009), pp. 126–151. https://doi.org/10.1017/CBO9780511770593.010

    Book  Google Scholar 

  98. N. Przybilla, in EAS Publications Series, vol. 43, ed. by R. Monier, B. Smalley, G. Wahlgren, P. Stee (2010), pp. 115–133. https://doi.org/10.1051/eas/1043008

  99. D.F. Gray, The Observation and Analysis of Stellar Photospheres (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  100. J.A. Carroll, Mon. Not. R. Astron. Soc. 93, 478 (1933). https://doi.org/10.1093/mnras/93.7.478

    Article  ADS  Google Scholar 

  101. C. Aerts, S. Simón-Díaz, P.J. Groot, P. Degroote, Astron. Astrophys. 569, A118 (2014). https://doi.org/10.1051/0004-6361/201424012

    Article  ADS  Google Scholar 

  102. A. Slettebak, I. Collins, G. W., P.B. Boyce, N.M. White, T.D. Parkinson, Astrophys. J. Suppl. Ser. 29, 137 (1975). https://doi.org/10.1086/190338

  103. P.S. Conti, D. Ebbets, Astrophys. J. 213, 438 (1977). https://doi.org/10.1086/155173

    Article  ADS  Google Scholar 

  104. L.R. Penny, Astrophys. J. 463, 737 (1996). https://doi.org/10.1086/177286

    Article  ADS  Google Scholar 

  105. I.D. Howarth, K.W. Siebert, G.A.J. Hussain, R.K. Prinja, Mon. Not. R. Astron. Soc. 284(2), 265 (1997). https://doi.org/10.1093/mnras/284.2.265

    Article  ADS  Google Scholar 

  106. S. Simón-Díaz, M. Godart, N. Castro, A. Herrero, C. Aerts, J. Puls, J. Telting, L. Grassitelli, Astron. Astrophys. 597, A22 (2017). https://doi.org/10.1051/0004-6361/201628541

    Article  ADS  Google Scholar 

  107. J.O. Sundqvist, S. Simón-Díaz, J. Puls, N. Markova, Astron. Astrophys. 559, L10 (2013). https://doi.org/10.1051/0004-6361/201322761

    Article  ADS  Google Scholar 

  108. R.L. Kurucz, SAO Special Report, vol. 309 (1970)

    Google Scholar 

  109. J.R. Giddings, Ph.D. Thesis, 1981

    Google Scholar 

  110. I. Hubeny, Comput. Phy. Commun. 52(1), 103 (1988). https://doi.org/10.1016/0010-4655(88)90177-4

    Article  ADS  Google Scholar 

  111. I. Hubeny, T. Lanz, Synspec: General Spectrum Synthesis Program (2011)

    Google Scholar 

  112. D.J. Hillier, D.L. Miller, Astrophys. J. 496(1), 407 (1998). https://doi.org/10.1086/305350

    Article  ADS  Google Scholar 

  113. A.E. Santolaya-Rey, J. Puls, A. Herrero, Astron. Astrophys. 323, 488 (1997)

    ADS  Google Scholar 

  114. J. Puls, M.A. Urbaneja, R. Venero, T. Repolust, U. Springmann, A. Jokuthy, M.R. Mokiem, Astron. Astrophys. 435(2), 669 (2005). https://doi.org/10.1051/0004-6361:20042365

    Article  ADS  Google Scholar 

  115. J. Puls, in The Lives and Death-Throes of Massive Stars, IAU Symposium, vol. 329, ed. by J.J. Eldridge, J.C. Bray, L.A.S. McClelland, L. Xiao (2017), pp. 435–435. https://doi.org/10.1017/S1743921317000229

  116. G. Gräfener, L. Koesterke, W.R. Hamann, Astron. Astrophys. 387, 244 (2002). https://doi.org/10.1051/0004-6361:20020269

    Article  ADS  Google Scholar 

  117. W.R. Hamann, G. Gräfener, Astron. Astrophys. 427, 697 (2004). https://doi.org/10.1051/0004-6361:20040506

    Article  ADS  Google Scholar 

  118. A. Sander, T. Shenar, R. Hainich, A. Gímenez-García, H. Todt, W.R. Hamann, Astron. Astrophys. 577, A13 (2015). https://doi.org/10.1051/0004-6361/201425356

    Article  ADS  Google Scholar 

  119. A.W.A. Pauldrach, T.L. Hoffmann, M. Lennon, Astron. Astrophys. 375, 161 (2001). https://doi.org/10.1051/0004-6361:20010805

    Article  ADS  Google Scholar 

  120. J. Puls, M. Asplund (2015). e-prints. arXiv:1512.06972

    Google Scholar 

  121. J. Puls, R.P. Kudritzki, A. Herrero, A.W.A. Pauldrach, S.M. Haser, D.J. Lennon, R. Gabler, S.A. Voels, J.M. Vilchez, S. Wachter, A. Feldmeier, Astron. Astrophys. 305, 171 (1996)

    ADS  Google Scholar 

  122. N.D. McErlean, D.J. Lennon, P.L. Dufton, Astron. Astrophys. 349, 553 (1999)

    ADS  Google Scholar 

  123. M.F. Nieva, Astron. Astrophys. 550, A26 (2013). https://doi.org/10.1051/0004-6361/201219677

    Article  ADS  Google Scholar 

  124. S. Daflon, K. Cunha, S.R. Becker, V.V. Smith, Astrophys. J. 552(1), 309 (2001). https://doi.org/10.1086/320460

    Article  ADS  Google Scholar 

  125. S. Daflon, K. Cunha, K. Butler, V.V. Smith, Astrophys. J. 563(1), 325 (2001). https://doi.org/10.1086/323795

    Article  ADS  Google Scholar 

  126. M.A. Urbaneja, A. Herrero, F. Bresolin, R.P. Kudritzki, W. Gieren, J. Puls, Astrophys. J. Lett. 584(2), L73 (2003). https://doi.org/10.1086/368406

    Article  ADS  Google Scholar 

  127. T. Morel, K. Butler, C. Aerts, C. Neiner, M. Briquet, Astron. Astrophys. 457(2), 651 (2006). https://doi.org/10.1051/0004-6361:20065171

    Article  ADS  Google Scholar 

  128. T. Morel, S. Hubrig, M. Briquet, Astron. Astrophys. 481(2), 453 (2008). https://doi.org/10.1051/0004-6361:20078999

    Article  ADS  Google Scholar 

  129. M.F. Nieva, N. Przybilla, Astron. Astrophys. 481(1), 199 (2008). https://doi.org/10.1051/0004-6361:20078203

    Article  ADS  Google Scholar 

  130. M.F. Nieva, S. Simón-Díaz, Astron. Astrophys. 532, A2 (2011). https://doi.org/10.1051/0004-6361/201116478

    Article  Google Scholar 

  131. F. Martins, S. Simón-Díaz, A. Palacios, I. Howarth, C. Georgy, N.R. Walborn, J.C. Bouret, R. Barbá, Astron. Astrophys. 578, A109 (2015). https://doi.org/10.1051/0004-6361/201526130

    Article  ADS  Google Scholar 

  132. F. Martins, S. Foschino, J.C. Bouret, R. Barbá, I. Howarth, Astron. Astrophys. 588, A64 (2016). https://doi.org/10.1051/0004-6361/201628288

    Article  ADS  Google Scholar 

  133. F. Martins, S. Simón-Díaz, R.H. Barbá, R.C. Gamen, S. Ekström, Astron. Astrophys. 599, A30 (2017). https://doi.org/10.1051/0004-6361/201629548

    Article  ADS  Google Scholar 

  134. F. Martins, L. Mahy, A. Hervé, Astron. Astrophys. 607, A82 (2017). https://doi.org/10.1051/0004-6361/201731593

    Article  ADS  Google Scholar 

  135. M.R. Villamariz, A. Herrero, Astron. Astrophys. 442(1), 263 (2005). https://doi.org/10.1051/0004-6361:20052848

    Article  ADS  Google Scholar 

  136. C.J. Evans, S.J. Smartt, J.K. Lee, D.J. Lennon, A. Kaufer, P.L. Dufton, C. Trundle, A. Herrero, S. Simón-Díaz, A. de Koter, W.R. Hamann, M.A. Hendry, I. Hunter, M.J. Irwin, A.J. Korn, R.P. Kudritzki, N. Langer, M.R. Mokiem, F. Najarro, A.W.A. Pauldrach, N. Przybilla, J. Puls, R.S.I. Ryans, M.A. Urbaneja, K.A. Venn, M.R. Villamariz, Astron. Astrophys. 437(2), 467 (2005). https://doi.org/10.1051/0004-6361:20042446

    Article  ADS  Google Scholar 

  137. C.J. Evans, W.D. Taylor, V. Hénault-Brunet, H. Sana, A. de Koter, S. Simón-Díaz, G. Carraro, T. Bagnoli, N. Bastian, J.M. Bestenlehner, A.Z. Bonanos, E. Bressert, I. Brott, M.A. Campbell, M. Cantiello, J.S. Clark, E. Costa, P.A. Crowther, S.E. de Mink, E. Doran, P.L. Dufton, P.R. Dunstall, K. Friedrich, M. Garcia, M. Gieles, G. Gräfener, A. Herrero, I.D. Howarth, R.G. Izzard, N. Langer, D.J. Lennon, J. Maíz Apellániz, N. Markova, F. Najarro, J. Puls, O.H. Ramirez, C. Sabín-Sanjulián, S.J. Smartt, V.E. Stroud, J.T. van Loon, J.S. Vink, N.R. Walborn, Astron. Astrophys. 530, A108 (2011). https://doi.org/10.1051/0004-6361/201116782

  138. R.H. Barbá, R. Gamen, J.I. Arias, N. Morrell, J. Maíz Apellániz, E. Alfaro, N. Walborn, A. Sota, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 38 (2010), pp. 30–32

    Google Scholar 

  139. R.H. Barbá, R. Gamen, J.I. Arias, N.I. Morrell, in The Lives and Death-Throes of Massive Stars, IAU Symposium, vol. 329, ed. by J.J. Eldridge, J.C. Bray, L.A.S. McClelland, L. Xiao (2017), pp. 89–96. https://doi.org/10.1017/S1743921317003258

  140. S. Simón-Díaz, I. Negueruela, J. Maíz Apellániz, N. Castro, A. Herrero, M. Garcia, J.A. Pérez-Prieto, N. Caon, J.M. Alacid, I. Camacho, R. Dorda, M. Godart, C. González-Fernández, G. Holgado, K. Rübke, in Highlights of Spanish Astrophysics VIII (Springer, Berlin, 2015), pp. 576–581

    Google Scholar 

  141. G.A. Wade, C. Neiner, E. Alecian, J.H. Grunhut, V. Petit, B.d. Batz, D.A. Bohlender, D.H. Cohen, H.F. Henrichs, O. Kochukhov, J.D. Land street, N. Manset, F. Martins, S. Mathis, M.E. Oksala, S.P. Owocki, T. Rivinius, M.E. Shultz, J.O. Sundqvist, R.H.D. Townsend, A. ud-Doula, J.C. Bouret, J. Braithwaite, M. Briquet, A.C. Carciofi, A. David-Uraz, C.P. Folsom, A.W. Fullerton, B. Leroy, W.L.F. Marcolino, A.F.J. Moffat, Y. Nazé, N.S. Louis, M. Aurière, S. Bagnulo, J.D. Bailey, R.H. Barbá, A. Blazère, T. Böhm, C. Catala, J.F. Donati, L. Ferrario, D. Harrington, I.D. Howarth, R. Ignace, L. Kaper, T. Lüftinger, R. Prinja, J.S. Vink, W.W. Weiss, I. Yakunin, Mon. Not. R. Astron. Soc. 456(1), 2 (2016). https://doi.org/10.1093/mnras/stv2568

Download references

Acknowledgements

I want to warmly thank all those friends and colleagues from which I’ve been able to learn and discuss about quantitative spectroscopy since my first years as PhD student at the Instituto de Astrofísica de Canarias. Special thanks to A. Herrero, M. A. Urbaneja, C. Villamariz, F. Najarro, C. Trundle, D. J. Lennon, J. Puls, N. Castro, M. Garcia, F. Nieva, C. Sabín-Sanjulian, K. Rübke, G. Holgado, S. Berlanas, and A. de Burgos. Let this text serves to spread part of the knowledge I’ve acquired from all of you during these years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Simón-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simón-Díaz, S. (2020). A Modern Guide to Quantitative Spectroscopy of Massive OB Stars. In: Kabáth, P., Jones, D., Skarka, M. (eds) Reviews in Frontiers of Modern Astrophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38509-5_6

Download citation

Publish with us

Policies and ethics