Advertisement

Role of Hormones in Common Benign Uterine Lesions: Endometrial Polyps, Leiomyomas, and Adenomyosis

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1242)

Abstract

Leiomyoma, adenomyosis, and endometrial polyps are benign uterine disorders which seem to develop in the context of hormonal imbalances, due to steroid hormones, estrogen and progesterone, in association with various factors ranging from genetic factors to modifiable lifestyle factors. A growing body of evidence suggests that those hormones and their receptors are key modulators in the genesis and the growth of those pathologic entities. Further studies are required to understand their involvement in the pathogenesis of those lesions and their link to other factors such as extracellular matrix components, growth factors, chemokines, cytokines, and tissue repair mechanisms.

Keywords

Leiomyoma Adenomyosis Endometrial polyp Selective progesterone receptors modulators (SPRM) Uterine artery embolization (UAE) Myomectomy Hysteroscopic resection Myolysis Tamoxifen 

References

  1. 1.
    Deneris A. PALM-COEIN nomenclature for abnormal uterine bleeding. J Midwifery Womens Health. 2016;61:376–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Munro MG. Uterine polyps, adenomyosis, leiomyomas, and endometrial receptivity. Fertil Steril. 2019;111:629–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94:435–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188:100–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tiltman AJ. Smooth muscle neoplasms of the uterus. Curr Opin Obstet Gynecol. 1997;9:48–51.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kjerulff KH, Langenberg P, Seidman JD, Stolley PD, Guzinski GM. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med. 1996;41:483–90.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Marshall LM, Spiegelman D, Barbieri RL, Goldman MB, Manson JE, Colditz GA, et al. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90:967–73.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Munro MG, HOD C, Broder MS, Fraser IS, FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet. 2011;113:3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect. 2003;111:1037–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Huyck KL, Panhuysen CIM, Cuenco KT, Zhang J, Goldhammer H, Jones ES, et al. The impact of race as a risk factor for symptom severity and age at diagnosis of uterine leiomyomata among affected sisters. Am J Obstet Gynecol. 2008;198:168.e1–9.CrossRefGoogle Scholar
  11. 11.
    Peddada SD, Laughlin SK, Miner K, Guyon J-P, Haneke K, Vahdat HL, et al. Growth of uterine leiomyomata among premenopausal black and white women. Proc Natl Acad Sci U S A. 2008;105:19887–92.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206:211.e1–9.CrossRefGoogle Scholar
  13. 13.
    Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG Int J Obstet Gynaecol. 2017;124:1501–12.CrossRefGoogle Scholar
  14. 14.
    Pavone D, Clemenza S, Sorbi F, Fambrini M, Petraglia F. Epidemiology and risk factors of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2018;46:3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Canevari RA, Pontes A, Rosa FE, Rainho CA, Rogatto SR. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis. Am J Obstet Gynecol. 2005;193:1395–403.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37:1350–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ono M, Qiang W, Serna VA, Yin P, Coon JS, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7:e36935.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mäkinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Markowski DN, Bartnitzke S, Löning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. Int J Cancer. 2012;131:1528–36.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kämpjärvi K, Mäkinen N, Mehine M, Välipakka S, Uimari O, Pitkänen E, et al. MED12 mutations and FH inactivation are mutually exclusive in uterine leiomyomas. Br J Cancer. 2016;114:1405–11.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98:3387–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tomlinson IPM, Alam NA, Rowan AJ, Barclay E, Jaeger EEM, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30:406–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Kovács KA, Oszter A, Göcze PM, Környei JL, Szabó I. Comparative analysis of cyclin D1 and oestrogen receptor (alpha and beta) levels in human leiomyoma and adjacent myometrium. Mol Hum Reprod. 2001;7:1085–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Ying Z, Weiyuan Z. Dual actions of progesterone on uterine leiomyoma correlate with the ratio of progesterone receptor A:B. Gynecol Endocrinol. 2009;25:520–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Viville B, Charnock-Jones DS, Sharkey AM, Wetzka B, Smith SK. Distribution of the A and B forms of the progesterone receptor messenger ribonucleic acid and protein in uterine leiomyomata and adjacent myometrium. Hum Reprod. 1997;12:815–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Benassayag C, Leroy MJ, Rigourd V, Robert B, Honoré JC, Mignot TM, et al. Estrogen receptors (ERalpha/ERbeta) in normal and pathological growth of the human myometrium: pregnancy and leiomyoma. Am J Phys. 1999;276:E1112–8.Google Scholar
  27. 27.
    Bulun SE. Uterine fibroids. N Engl J Med. 2013;369:1344–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Tai C-T, Lin W-C, Chang W-C, Chiu T-H, Chen GTC. Classical cadherin and catenin expression in normal myometrial tissues and uterine leiomyomas. Mol Reprod Dev. 2003;64:172–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanwar PS, Lee H-J, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, et al. Constitutive activation of beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81:545–52.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–86.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73:1006–11.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Parsanezhad ME, Azmoon M, Alborzi S, Rajaeefard A, Zarei A, Kazerooni T, et al. A randomized, controlled clinical trial comparing the effects of aromatase inhibitor (letrozole) and gonadotropin-releasing hormone agonist (triptorelin) on uterine leiomyoma volume and hormonal status. Fertil Steril. 2010;93:192–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9:1603–14.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kim JJ, Sefton EC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol. 2012;358:223–31.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Donnez J, Tomaszewski J, Vázquez F, Bouchard P, Lemieszczuk B, Baró F, et al. Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med. 2012;366:421–32.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T, et al. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med. 2012;366:409–20.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:2433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ohara N, Morikawa A, Chen W, Wang J, DeManno DA, Chwalisz K, et al. Comparative effects of SPRM asoprisnil (J867) on proliferation, apoptosis, and the expression of growth factors in cultured uterine leiomyoma cells and normal myometrial cells. Reprod Sci. 2007;14:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chen W, Ohara N, Wang J, Xu Q, Liu J, Morikawa A, et al. A novel selective progesterone receptor modulator asoprisnil (J867) inhibits proliferation and induces apoptosis in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells. J Clin Endocrinol Metab. 2006;91:1296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Hoekstra AV, Sefton EC, Berry E, Lu Z, Hardt J, Marsh E, et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94:1768–74.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bagaria M, Suneja A, Vaid NB, Guleria K, Mishra K. Low-dose mifepristone in treatment of uterine leiomyoma: a randomised double-blind placebo-controlled clinical trial. Aust N Z J Obstet Gynaecol. 2009;49:77–83.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Williams ARW, Critchley HOD, Osei J, Ingamells S, Cameron IT, Han C, et al. The effects of the selective progesterone receptor modulator asoprisnil on the morphology of uterine tissues after 3 months treatment in patients with symptomatic uterine leiomyomata. Hum Reprod. 2007;22:1696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Engman M, Granberg S, Williams ARW, Meng CX, Lalitkumar PGL, Gemzell-Danielsson K. Mifepristone for treatment of uterine leiomyoma. A prospective randomized placebo controlled trial. Hum Reprod. 2009;24:1870–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Eisinger SH, Meldrum S, Fiscella K, le Roux HD, Guzick DS. Low-dose mifepristone for uterine leiomyomata. Obstet Gynecol. 2003;101:243–50.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Marret H, Fritel X, Ouldamer L, Bendifallah S, Brun J-L, De Jesus I, et al. Therapeutic management of uterine fibroid tumors: updated French guidelines. Eur J Obstet Gynecol Reprod Biol. 2012;165:156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gliklich RE, Leavy MB, Velentgas P, Campion DM, Mohr P, Sabharwal R, et al. Identification of Future Research Needs in the Comparative Management of Uterine Fibroid Disease. Effective Health Care Program. https://effectivehealthcare.ahrq.gov/topics/uterine-fibroids-2010/research
  47. 47.
    Lethaby A, Duckitt K, Farquhar C. Non-steroidal anti-inflammatory drugs for heavy menstrual bleeding. Cochrane Database Syst Rev. 2013;(1):CD000400.Google Scholar
  48. 48.
    Mutter GL, Bergeron C, Deligdisch L, Ferenczy A, Glant M, Merino M, et al. The spectrum of endometrial pathology induced by progesterone receptor modulators. Mod Pathol. 2008;21:591–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tristan M, Orozco LJ, Steed A, Ramírez-Morera A, Stone P. Mifepristone for uterine fibroids. Cochrane Database Syst Rev. 2012;(8):CD007687.Google Scholar
  50. 50.
    Shen Q, Hua Y, Jiang W, Zhang W, Chen M, Zhu X. Effects of mifepristone on uterine leiomyoma in premenopausal women: a meta-analysis. Fertil Steril. 2013;100:1722–6.e1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sangkomkamhang US, Lumbiganon P, Laopaiboon M, Mol BWJ. Progestogens or progestogen-releasing intrauterine systems for uterine fibroids. Cochrane Database Syst Rev. 2013;(2):CD008994.Google Scholar
  52. 52.
    Steinauer J, Pritts EA, Jackson R, Jacoby AF. Systematic review of mifepristone for the treatment of uterine leiomyomata. Obstet Gynecol. 2004;103:1331–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Muzii L, Boni T, Bellati F, Marana R, Ruggiero A, Zullo MA, et al. GnRH analogue treatment before hysteroscopic resection of submucous myomas: a prospective, randomized, multicenter study. Fertil Steril. 2010;94:1496–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lethaby AE, Vollenhoven BJ. An evidence-based approach to hormonal therapies for premenopausal women with fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22:307–31.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Laughlin-Tommaso SK, Stewart EA. Moving toward individualized medicine for uterine leiomyomas. Obstet Gynecol. 2018;132:961–71.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Flierman PA, Oberyé JJL, van der Hulst VPM, de Blok S. Rapid reduction of leiomyoma volume during treatment with the GnRH antagonist ganirelix. BJOG Int J Obstet Gynaecol. 2005;112:638–42.CrossRefGoogle Scholar
  57. 57.
    Palomba S, Orio F, Morelli M, Russo T, Pellicano M, Zupi E, et al. Raloxifene administration in premenopausal women with uterine leiomyomas: a pilot study. J Clin Endocrinol Metab. 2002;87:3603–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Palomba S, Russo T, Orio F, Tauchmanovà L, Zupi E, Panici PLB, et al. Effectiveness of combined GnRH analogue plus raloxifene administration in the treatment of uterine leiomyomas: a prospective, randomized, single-blind, placebo-controlled clinical trial. Hum Reprod. 2002;17:3213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hilário SG, Bozzini N, Borsari R, Baracat EC. Action of aromatase inhibitor for treatment of uterine leiomyoma in perimenopausal patients. Fertil Steril. 2009;91:240–3.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hartmann KE, Fonnesbeck C, Surawicz T, Krishnaswami S, Andrews JC, Wilson JE, et al. Management of Uterine Fibroids [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); http://www.ncbi.nlm.nih.gov/books/NBK537742/
  61. 61.
    Hehenkamp WJK, Volkers NA, Donderwinkel PFJ, de Blok S, Birnie E, Ankum WM, et al. Uterine artery embolization versus hysterectomy in the treatment of symptomatic uterine fibroids (EMMY trial): peri- and postprocedural results from a randomized controlled trial. Am J Obstet Gynecol. 2005;193:1618–29.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Peregrino PFM, de Lorenzo Messina M, dos Santos Simões R, Soares-Júnior JM, Baracat EC. Review of magnetic resonance-guided focused ultrasound in the treatment of uterine fibroids. Clinics. 2017;72:637–41.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Brucker SY, Hahn M, Kraemer D, Taran FA, Isaacson KB, Krämer B. Laparoscopic radiofrequency volumetric thermal ablation of fibroids versus laparoscopic myomectomy. Int J Gynaecol Obstet. 2014;125:261–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lee BB, Yu SP. Radiofrequency ablation of uterine fibroids: a review. Curr Obstet Gynecol Rep. 2016;5:318–24.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Krämer B, Hahn M, Taran F-A, Kraemer D, Isaacson KB, Brucker SY. Interim analysis of a randomized controlled trial comparing laparoscopic radiofrequency volumetric thermal ablation of uterine fibroids with laparoscopic myomectomy. Int J Gynaecol Obstet. 2016;133:206–11.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B. Uterine fibroids. Nat Rev Dis Primer. 2016;2:16043.CrossRefGoogle Scholar
  67. 67.
    Bird CC, McElin TW, Manalo-Estrella P. The elusive adenomyosis of the uterus—revisited. Am J Obstet Gynecol. 1972;112:583–93.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Seidman JD, Kjerulff KH. Pathologic findings from the Maryland Women’s Health Study: practice patterns in the diagnosis of adenomyosis. Int J Gynecol Pathol. 1996;15:217–21.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pontis A, D’Alterio MN, Pirarba S, de Angelis C, Tinelli R, Angioni S. Adenomyosis: a systematic review of medical treatment. Gynecol Endocrinol. 2016;32:696–700.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hever A, Roth RB, Hevezi PA, Lee J, Willhite D, White EC, et al. Molecular characterization of human adenomyosis. Mol Hum Reprod. 2006;12:737–48.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Farquhar C, Brosens I. Medical and surgical management of adenomyosis. Best Pract Res Clin Obstet Gynaecol. 2006;20:603–16.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bazot M, Daraï E. Role of transvaginal sonography and magnetic resonance imaging in the diagnosis of uterine adenomyosis. Fertil Steril. 2018;109:389–97.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Grimbizis GF, Mikos T, Tarlatzis B. Uterus-sparing operative treatment for adenomyosis. Fertil Steril. 2014;101:472–87.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kishi Y, Suginami H, Kuramori R, Yabuta M, Suginami R, Taniguchi F. Four subtypes of adenomyosis assessed by magnetic resonance imaging and their specification. Am J Obstet Gynecol. 2012;207:114.e1–7.CrossRefGoogle Scholar
  75. 75.
    Taran FA, Stewart EA, Brucker S. Adenomyosis: epidemiology, risk factors, clinical phenotype and surgical and interventional alternatives to hysterectomy. Geburtshilfe Frauenheilkd. 2013;73:924–31.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vannuccini S, Tosti C, Carmona F, Huang SJ, Chapron C, Guo S-W, et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online. 2017;35:592–601.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bergeron C, Amant F, Ferenczy A. Pathology and physiopathology of adenomyosis. Best Pract Res Clin Obstet Gynaecol. 2006;20:511–21.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Brosens JJ, de Souza NM, Barker FG. Uterine junctional zone: function and disease. Lancet Lond Engl. 1995;346:558–60.CrossRefGoogle Scholar
  79. 79.
    Takahashi K, Nagata H, Kitao M. Clinical usefulness of determination of estradiol level in the menstrual blood for patients with endometriosis. Nihon Sanka Fujinka Gakkai Zasshi. 1989;41:1849–50.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Tong X, Li Z, Wu Y, Fu X, Zhang Y, Fan H. COMT 158G/A and CYP1B1 432C/G polymorphisms increase the risk of endometriosis and adenomyosis: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;179:17–21.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wang Y, Qu Y, Song W. Genetic variation in COX-2 -1195 and the risk of endometriosis and adenomyosis. Clin Exp Obstet Gynecol. 2015;42:168–72.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Nie J, Liu X, Guo S-W. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci. 2010;17:995–1005.CrossRefGoogle Scholar
  83. 83.
    Mehasseb MK, Panchal R, Taylor AH, Brown L, Bell SC, Habiba M. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil Steril. 2011;95:2228–35, 2235.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cohen I, Shapira J, Beyth Y, Bernheim J, Tepper R, Cordoba M, et al. Estrogen and progesterone receptors of adenomyosis in postmenopausal breast cancer patients treated with tamoxifen. Gynecol Obstet Investig. 1998;45:126–31.CrossRefGoogle Scholar
  85. 85.
    McCluggage WG, Desai V, Manek S. Tamoxifen-associated postmenopausal adenomyosis exhibits stromal fibrosis, glandular dilatation and epithelial metaplasias. Histopathology. 2000;37:340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Leyendecker G, Wildt L. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR). Horm Mol Biol Clin Investig. 2011;5:125–42.PubMedPubMedCentralGoogle Scholar
  87. 87.
    García-Solares J, Donnez J, Donnez O, Dolmans M-M. Pathogenesis of uterine adenomyosis: invagination or metaplasia? Fertil Steril. 2018;109:371–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280:529–38.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Riggs JC, Lim EK, Liang D, Bullwinkel R. Cesarean section as a risk factor for the development of adenomyosis uteri. J Reprod Med. 2014;59:20–4.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Parazzini F, Vercellini P, Panazza S, Chatenoud L, Oldani S, Crosignani PG. Risk factors for adenomyosis. Hum Reprod. 1997;12:1275–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Templeman C, Marshall SF, Ursin G, Horn-Ross PL, Clarke CA, Allen M, et al. Adenomyosis and endometriosis in the California Teachers Study. Fertil Steril. 2008;90:415–24.PubMedCrossRefGoogle Scholar
  92. 92.
    Taran FA, Weaver AL, Coddington CC, Stewart EA. Understanding adenomyosis: a case control study. Fertil Steril. 2010;94:1223–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87–101.PubMedCrossRefGoogle Scholar
  94. 94.
    Ferenczy A. Pathophysiology of adenomyosis. Hum Reprod Update. 1998;4:312–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.PubMedCrossRefGoogle Scholar
  96. 96.
    Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22:137–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Ibrahim MG, Chiantera V, Frangini S, Younes S, Köhler C, Taube ET, et al. Ultramicro-trauma in the endometrial-myometrial junctional zone and pale cell migration in adenomyosis. Fertil Steril. 2015;104:1475–1483.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Vannuccini S, Petraglia F. Recent advances in understanding and managing adenomyosis. F1000Research 2019, 8(F1000 Faculty Rev):283 Last updated: 17 JUL 2019. https://f1000research.com/articles/8-28
  99. 99.
    Angioni S, Pontis A, Dessole M, Surico D, De Cicco Nardone C, Melis I. Pain control and quality of life after laparoscopic en-block resection of deep infiltrating endometriosis (DIE) vs. incomplete surgical treatment with or without GnRHa administration after surgery. Arch Gynecol Obstet. 2015;291:363–70.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Fawzy M, Mesbah Y. Comparison of dienogest versus triptorelin acetate in premenopausal women with adenomyosis: a prospective clinical trial. Arch Gynecol Obstet. 2015;292:1267–71.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Igarashi M. A new therapy for pelvic endometriosis and uterine adenomyosis: local effect of vaginal and intrauterine danazol application. Asia Oceania J Obstet Gynaecol. 1990;16:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Luisi S, Razzi S, Lazzeri L, Bocchi C, Severi FM, Petraglia F. Efficacy of vaginal danazol treatment in women with menorrhagia during fertile age. Fertil Steril. 2009;92:1351–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Muneyyirci-Delale O, Chandrareddy A, Mankame S, Osei-Tutu N, von Gizycki H. Norethindrone acetate in the medical management of adenomyosis. Pharmaceuticals. 2012;5:1120–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sasagawa S, Shimizu Y, Kami H, Takeuchi T, Mita S, Imada K, et al. Dienogest is a selective progesterone receptor agonist in transactivation analysis with potent oral endometrial activity due to its efficient pharmacokinetic profile. Steroids. 2008;73:222–31.PubMedCrossRefGoogle Scholar
  105. 105.
    Takebayashi T, Fujino Y, Umesaki N, Ogita S. Danazol suspension injected into the uterine cervix of patients with adenomyosis and myoma. Preliminary study. Gynecol Obstet Invest. 1995;39:207–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Tosti C, Vannuccini S, Troìa L, Luisi S, Centini G, Lazzeri L, et al. Long-term vaginal danazol treatment in fertile age women with adenomyosis. J Endometr Pelvic Pain Disord. 2017;9:39–43.CrossRefGoogle Scholar
  107. 107.
    Zhang X, Yuan H, Deng L, Hu F, Ma J, Lin J. Evaluation of the efficacy of a danazol-loaded intrauterine contraceptive device on adenomyosis in an ICR mouse model. Hum Reprod. 2008;23:2024–30.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Fedele L, Bianchi S, Raffaelli R, Portuese A, Dorta M. Treatment of adenomyosis-associated menorrhagia with a levonorgestrel-releasing intrauterine device. Fertil Steril. 1997;68:426–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Fraser IS. Non-contraceptive health benefits of intrauterine hormonal systems. Contraception. 2010;82:396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Sabbioni L, Petraglia F, Luisi S. Non-contraceptive benefits of intrauterine levonorgestrel administration: why not? Gynecol Endocrinol. 2017;33:822–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Fong YF, Singh K. Medical treatment of a grossly enlarged adenomyotic uterus with the levonorgestrel-releasing intrauterine system. Contraception. 1999;60:173–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Ozdegirmenci O, Kayikcioglu F, Akgul MA, Kaplan M, Karcaaltincaba M, Haberal A, et al. Comparison of levonorgestrel intrauterine system versus hysterectomy on efficacy and quality of life in patients with adenomyosis. Fertil Steril. 2011;95:497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Marjoribanks J, Proctor M, Farquhar C, Derks RS. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database Syst Rev. 2010;(1):CD001751.Google Scholar
  114. 114.
    Brosens I, Gordts S, Habiba M, Benagiano G. Uterine cystic adenomyosis: a disease of younger women. J Pediatr Adolesc Gynecol. 2015;28:420–6.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gordts S, Campo R, Brosens I. Hysteroscopic diagnosis and excision of myometrial cystic adenomyosis. Gynecol Surg. 2014;11:273–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kriplani A, Mahey R, Agarwal N, Bhatla N, Yadav R, Singh MK. Laparoscopic management of juvenile cystic adenomyoma: four cases. J Minim Invasive Gynecol. 2011;18:343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Dueholm M. Uterine adenomyosis and infertility, review of reproductive outcome after in vitro fertilization and surgery. Acta Obstet Gynecol Scand. 2017;96:715–26.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Pepas L, Deguara C, Davis C. Update on the surgical management of adenomyosis. Curr Opin Obstet Gynecol. 2012;24:259–64.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kim K-R, Peng R, Ro JY, Robboy SJ. A diagnostically useful histopathologic feature of endometrial polyp: the long axis of endometrial glands arranged parallel to surface epithelium. Am J Surg Pathol. 2004;28:1057–62.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    de Rijk SR, Steenbergen ME, Nieboer TE, Coppus SF. Atypical endometrial polyps and concurrent endometrial cancer: a systematic review. Obstet Gynecol. 2016;128:519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kelly P, Dobbs SP, McCluggage WG. Endometrial hyperplasia involving endometrial polyps: report of a series and discussion of the significance in an endometrial biopsy specimen. BJOG Int J Obstet Gynaecol. 2007;114:944–50.CrossRefGoogle Scholar
  122. 122.
    Wong M, Crnobrnja B, Liberale V, Dharmarajah K, Widschwendter M, Jurkovic D. The natural history of endometrial polyps. Hum Reprod. 2017;32:340–5.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Fletcher JA, Pinkus JL, Lage JM, Morton CC, Pinkus GS. Clonal 6p21 rearrangement is restricted to the mesenchymal component of an endometrial polyp. Genes Chromosomes Cancer. 1992;5:260–3.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Dal Cin P, Vanni R, Marras S, Moerman P, Kools P, Andria M, et al. Four cytogenetic subgroups can be identified in endometrial polyps. Cancer Res. 1995;55:1565–8.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Tallini G, Vanni R, Manfioletti G, Kazmierczak B, Faa G, Pauwels P, et al. HMGI-C and HMGI(Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with rearrangement of the HMGI-C and HMGI(Y) genes. Lab Investig J Tech Methods Pathol. 2000;80:359–69.CrossRefGoogle Scholar
  126. 126.
    Dal Cin P, Timmerman D, Van den Berghe I, Wanschura S, Kazmierczak B, Vergote I, et al. Genomic changes in endometrial polyps associated with tamoxifen show no evidence for its action as an external carcinogen. Cancer Res. 1998;58:2278–81.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Maia H, Pimentel K, Silva TMC, Freitas LAR, Zausner B, Athayde C, et al. Aromatase and cyclooxygenase-2 expression in endometrial polyps during the menstrual cycle. Gynecol Endocrinol. 2006;22:219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Pal L, Niklaus AL, Kim M, Pollack S, Santoro N. Heterogeneity in endometrial expression of aromatase in polyp-bearing uteri. Hum Reprod. 2008;23:80–4.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Zhang C, Sung CJ, Quddus MR, Simon RA, Jazaerly T, Lawrence WD. Association of ovarian hyperthecosis with endometrial polyp, endometrial hyperplasia, and endometrioid adenocarcinoma in postmenopausal women: a clinicopathological study of 238 cases. Hum Pathol. 2017;59:120–4.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Berlière M, Radikov G, Galant C, Piette P, Marbaix E, Donnez J. Identification of women at high risk of developing endometrial cancer on tamoxifen. Eur J Cancer. 2000;36(Suppl 4):S35–6.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Nappi L, Indraccolo U, Di Spiezio Sardo A, Gentile G, Palombino K, Castaldi MA, et al. Are diabetes, hypertension, and obesity independent risk factors for endometrial polyps? J Minim Invasive Gynecol. 2009;16:157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lee SC, Kaunitz AM, Sanchez-Ramos L, Rhatigan RM. The oncogenic potential of endometrial polyps: a systematic review and meta-analysis. Obstet Gynecol. 2010;116:1197–205.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Goldstein SR, Monteagudo A, Popiolek D, Mayberry P, Timor-Tritsch I. Evaluation of endometrial polyps. Am J Obstet Gynecol. 2002;186:669–74.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Salim S, Won H, Nesbitt-Hawes E, Campbell N, Abbott J. Diagnosis and management of endometrial polyps: a critical review of the literature. J Minim Invasive Gynecol. 2011;18:569–81.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Savelli L, De Iaco P, Santini D, Rosati F, Ghi T, Pignotti E, et al. Histopathologic features and risk factors for benignity, hyperplasia, and cancer in endometrial polyps. Am J Obstet Gynecol. 2003;188:927–31.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Li F, Wei S, Yang S, Liu Z, Nan F. Post hysteroscopic progesterone hormone therapy in the treatment of endometrial polyps. Pak J Med Sci. 2018;34:1267–71.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Arnes M, Hvingel B, Orbo A. Levonorgestrel-impregnated intrauterine device reduces occurrence of hyperplastic polyps: a population-based follow-up cohort study. Anticancer Res. 2014;34:2319–24.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pathology and Molecular PathologyCentre Jean PerrinClermont-FerrandFrance
  2. 2.UMR INSERM 1240, Universite Clermont AuvergneClermont-FerrandFrance

Personalised recommendations