Skip to main content

Deep Neural Network Attribution Methods for Leakage Analysis and Symmetric Key Recovery

  • Conference paper
  • First Online:
Selected Areas in Cryptography – SAC 2019 (SAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11959))

Included in the following conference series:

Abstract

Deep Neural Networks (DNNs) have recently received significant attention in the side-channel community due to their state-of-the-art performance in security testing of embedded systems. However, research on the subject mostly focused on techniques to improve the attack efficiency in terms of the number of traces required to extract secret parameters. What has not been investigated in detail is a constructive approach of DNNs as a tool to evaluate and improve the effectiveness of countermeasures against side-channel attacks. In this work, we close this gap by applying attribution methods that aim for interpreting Deep Neural Network (DNN) decisions in order to identify leaking operations in cryptographic implementations. In particular, we investigate three different approaches that have been proposed for feature visualization in image classification tasks and compare them regarding their suitability to reveal Points of Interest (POIs) in side-channel traces. We show by experiments with four separate data sets that the three methods are especially interesting in the context of side-channel protected implementations and misaligned measurements. Finally, we demonstrate that attribution can also serve as a powerful side-channel distinguisher leading to a successful retrieval of the secret key with at least five times fewer traces compared to standard key recovery in DNN-based attack setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeepExplain: attribution methods for Deep Learning. https://github.com/marcoancona/DeepExplain

  2. Keras Documentation. https://keras.io/

  3. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  4. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for Deep Neural Networks. ArXiv e-prints, November 2017

    Google Scholar 

  5. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1

    Chapter  Google Scholar 

  6. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, 1–46 (2015)

    Google Scholar 

  7. Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., Najm, Z.: Analysis and improvements of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_14

    Chapter  MATH  Google Scholar 

  8. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  9. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  10. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387

    Article  Google Scholar 

  11. Cooper, J., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test vector leakage assessment (TVLA) methodology in practice. In: International Cryptographic Module Conference (ICMC). Holiday Inn Gaithersburg, Gaithersburg (2013)

    Google Scholar 

  12. Coron, J.S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. Cryptology ePrint Archive, Report 2009/419 (2009). https://eprint.iacr.org/2009/419

  13. Elsken, T., Hendrik Metzen, J., Hutter, F.: Neural Architecture Search: A Survey. arXiv e-prints arXiv:1808.05377, August 2018

  14. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2

    Chapter  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  17. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convolutional neural networks with domain knowledge. In: Selected Areas in Cryptography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers, pp. 479–498 (2018). https://doi.org/10.1007/978-3-030-10970-7_22

    Chapter  Google Scholar 

  18. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, 1st edn. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  22. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_9

    Chapter  Google Scholar 

  23. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_20

    Chapter  Google Scholar 

  24. Picek, S., Heuser, A., Jovic, A., Batina, L., Legay, A.: The secrets of profiling for side-channel analysis: feature selection matters. Cryptology ePrint Archive, Report 2017/1110 (2017). https://eprint.iacr.org/2017/1110

  25. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  26. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017). https://doi.org/10.1109/TNNLS.2016.2599820

    Article  MathSciNet  Google Scholar 

  27. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626, October 2017. https://doi.org/10.1109/ICCV.2017.74

  28. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv:1312.6034 [cs], December 2013

  29. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  30. Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology ePrint Archive, Report 2018/196 (2018). https://eprint.iacr.org/2018/196

  31. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing [review article]. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018). https://doi.org/10.1109/MCI.2018.2840738

    Article  Google Scholar 

  32. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. CoRR abs/1311.2901 (2013). http://arxiv.org/abs/1311.2901

  33. Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21966-0_15

    Chapter  Google Scholar 

  34. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. arXiv:1702.04595 [cs], February 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hettwer .

Editor information

Editors and Affiliations

A Network Parameters

A Network Parameters

Table 2. Network configuration of CNN

In all experiments, we trained the network using Adam optimizer and a learning rate of 0.0001 (AES-Serial & AES-Serial-Desync) or 0.001 (ASCAD & AES-RSM).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hettwer, B., Gehrer, S., Güneysu, T. (2020). Deep Neural Network Attribution Methods for Leakage Analysis and Symmetric Key Recovery. In: Paterson, K., Stebila, D. (eds) Selected Areas in Cryptography – SAC 2019. SAC 2019. Lecture Notes in Computer Science(), vol 11959. Springer, Cham. https://doi.org/10.1007/978-3-030-38471-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38471-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38470-8

  • Online ISBN: 978-3-030-38471-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics