Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 203))

  • 1250 Accesses

Abstract

In this introductory chapter the goals of the monograph are described, the contents of the remaining chapters and Appendix A are outlined, and the relevant general references in the literature are mentioned. The direct and inverse scattering problems for the matrix Schrödinger equation on the half line with the general self-adjoint boundary condition are viewed as two mappings, and it is indicated how these two mappings become inverses of each other by specifying their domains appropriately. The traditional definition of the scattering matrix in one way with the Dirichlet boundary condition and in a different way with a non-Dirichlet boundary condition is criticized, and it is indicated that such a practice makes it impossible to formulate a well-posed inverse scattering problem unless the boundary condition is already known and the Dirichlet and non-Dirichlet boundary conditions are not mixed. It is emphasized that the recovery of the boundary condition should be a part of the solution to the inverse scattering problem rather than a part of the inverse scattering data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  2. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    Book  MATH  Google Scholar 

  4. T. Adachi, K. Maehara, On multidimensional inverse scattering for Stark Hamiltonians. J. Math. Phys. 48, 042101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Adachi, T. Kamada, M. Kazuno, K. Toratani, On multidimensional inverse scattering in an external electric field asymptotically zero in time. Inverse Prob. 27, 065006 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z.S. Agranovich, V.A. Marchenko, Reconstruction of the potential energy from the scattering matrix. Usp. Mat. Nauk (N.S.) 12, 143–145 (1957, in Russian)

    Google Scholar 

  7. Z.S. Agranovich, V.A. Marchenko, Re-establishment of the potential from the scattering matrix for a system of differential equations. Dokl. Akad. Nauk SSSR (N.S.) 113, 951–954 (1957, in Russian)

    Google Scholar 

  8. Z.S. Agranovich, V.A. Marchenko, Construction of tensor forces from scattering data. Dokl. Akad. Nauk SSSR (N.S.) 118, 1055–1058 (1958, in Russian)

    Google Scholar 

  9. Z.S. Agranovich, V.A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Breach, New York, 1963)

    MATH  Google Scholar 

  10. N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Hafner Publishing Company, New York, 1965)

    MATH  Google Scholar 

  11. T. Aktosun, Bound states and inverse scattering for the Schrödinger equation in one dimension. J. Math. Phys. 35, 6231–6236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential. SIAM J. Appl. Math. 56, 219–231 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Aktosun, Inverse scattering for vowel articulation with frequency-domain data. Inverse Prob. 21, 899–914 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Aktosun, Inverse scattering transform and the theory of solitons, in Encyclopedia of Complexity and Systems Science, ed. by R.A. Meyer (Springer, New York, 2009), pp. 4960–4971

    Chapter  Google Scholar 

  15. T. Aktosun, M. Klaus, Inverse theory: problem on the line, in Scattering, ed. by E.R. Pike, P.C. Sabatier (Academic, London, 2001), pp. 770–785

    Google Scholar 

  16. T. Aktosun, M. Klaus, Small-energy asymptotics for the Schrödinger equation on the line. Inverse Prob. 17, 619–632 (2001)

    Article  MATH  Google Scholar 

  17. T. Aktosun, M. Klaus, C. van der Mee, On the Riemann–Hilbert problem for the one-dimensional Schrödinger equation. J. Math. Phys. 34, 2651–2690 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Aktosun, M. Klaus, C. van der Mee, Wave scattering in one dimension with absorption. J. Math. Phys. 39, 1957–1992 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Aktosun, M. Klaus, C. van der Mee, Small-energy asymptotics of the scattering matrix for the matrix Schrödinger equation on the line. J. Math. Phys. 42, 4627–4652 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Aktosun, M. Klaus, R. Weder, Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line. J. Math. Phys. 52, 102101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Aktosun, M. Klaus, R. Weder, Small-energy analysis for the selfadjoint matrix Schrödinger operator on the half line. II. J. Math. Phys. 55, 032103 (2014)

    Article  MATH  Google Scholar 

  22. T. Aktosun, A. Machuca, P. Sacks, Determining the shape of a human vocal tract from pressure measurements at the lips. Inverse Prob. 33, 115002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Aktosun, V.G. Papanicolaou, Recovery of a potential from the ratio of the reflection and transmission coefficients. J. Math. Phys. 44, 4875–4883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Aktosun, P. Sacks, M. Unlu, Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials. J. Math. Phys. 56, 022106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Aktosun, R. Weder, Inverse scattering with partial information of the potential. J. Math. Anal. Appl. 270, 247–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Aktosun, R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation. Inverse Prob. 22, 89–114 (2006)

    Article  MATH  Google Scholar 

  27. T. Aktosun, R. Weder, The Borg–Marchenko theorem with continuous spectrum, in Recent Advances in Differential Equations and Mathematical Physics, ed. by N. Chernov, Y. Karpeshina, I.W. Knowles, R.T. Lewis, R. Weikard (American Mathematical Society, Providence, 2006), pp. 15–30

    Chapter  Google Scholar 

  28. T. Aktosun, R. Weder, High-energy analysis and Levinson’s theorem for the selfadjoint matrix Schrödinger operator on the half line. J. Math. Phys. 54, 012108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. V.A. Ambartsumian, Über eine Frage der Eigenwerttheorie. Z. Phys. 53, 690–695 (1929) (German)

    Google Scholar 

  30. S. Arians, Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38, 2761–2773 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Arians, Inverse Streutheorie für die Schrödinger Gleichung mit Magnet Felder. Dissertation. RWTH-Aachen, Berlin, Logos (1997, in German)

    Google Scholar 

  32. S. Arians, Geometric approach to inverse scattering for hydrogen-like systems in a homogeneous magnetic field. J. Math. Phys. 39, 1730–1743 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.Z. Arov, H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  34. M. Ballesteros, R. Weder, High-velocity estimates for the scattering operator and Ahanorov–Bohm effect in three dimensions. Commun. Math. Phys. 285, 345–398 (2009)

    Article  MATH  Google Scholar 

  35. M. Ballesteros, R. Weder, The Aharonov–Bohm effect and Tonomura et al. experiments: rigorous results. J. Math. Phys. 50, 122108 (2009)

    Google Scholar 

  36. M. Ballesteros, R. Weder, Aharonov–Bohm effect and high-velocity estimates of solutions to the Schrödinger equation. Commun. Math. Phys. 303, 175–211 (2011)

    Article  MATH  Google Scholar 

  37. M. Ballesteros, R. Weder, High-velocity estimates for Schrödinger operators in two dimensions: long-range magnetic potentials and time-dependent inverse scattering. Rev. Math. Phys. 27, 1550006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Ballesteros, R. Weder, Aharonov–Bohm effect and high-momenta inverse scattering for the Klein–Gordon equation. Ann. Henri Poincaré 17, 2905–2950 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Ballesteros, R. Weder, High-momenta estimates for the Klein–Gordon equation: long-range magnetic potentials and time-dependent inverse scattering. J. Phys. A 49, 155302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Bargmann, On the connection between phase shifts and scattering potential. Rev. Mod. Phys. 21, 488–493 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Bargmann, Remarks on the determination of a central field of force from the elastic scattering phase shifts. Phys. Rev. 75, 301–303 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Beals, The inverse problem for ordinary differential operators on the line. Am. J. Math. 107, 281–366 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Beals, R.R. Coifman, Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37, 39–90 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Beals, R.R. Coifman, Scattering and inverse scattering for first-order systems II. Inverse Prob. 3, 577–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Beals, P. Deift, C. Tomei, Direct and Inverse Scattering on the Line (American Mathematical Society, Providence, 1988)

    Book  MATH  Google Scholar 

  46. M.I. Belishev, An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR 297, 524–527 (1987, in Russian) [Soviet Math. Dokl. 36, 481–484 (1988) (English translation)]

    Google Scholar 

  47. M.I. Belishev, Recent progress in the boundary control method. Inverse Prob. 23, R1–R67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. M.I. Belishev, Boundary control method in dynamical inverse problems—an introductory course, in Dynamical Inverse Problems: Theory and Application, ed. by G.M.L. Gladwell, A. Morassi (Springer, New York, 2011), pp. 85–150

    Chapter  MATH  Google Scholar 

  49. G. Berkolaiko, R. Carlson, S.A. Fulling, P. Kuchment (eds.), Quantum Graphs and Their Applications (American Mathematical Society, Providence, 2006)

    MATH  Google Scholar 

  50. G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs (American Mathematical Society, Providence, 2013)

    MATH  Google Scholar 

  51. G. Berkolaiko, W. Liu, Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph. J. Math. Anal. Appl. 445, 803–818 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Blancarte, B. Grébert, R. Weder, High- and low-energy estimates for the Dirac equation. J. Math. Phys. 36, 991–1015 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Boman, P. Kurasov, Symmetries of quantum graphs and the inverse scattering problem. Adv. Appl. Math. 35, 58–70 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78, 1–96 (1946) (German)

    Google Scholar 

  55. G. Borg, Uniqueness theorems in the spectral theory of y″ + (λ − q(x))y = 0, in Proceedings of the 11th Scandinavian Congress of Mathematicians (Johan Grundt Tanums Forlag, Oslo, 1952), pp. 276–287

    Google Scholar 

  56. K.M. Case, On discrete inverse scattering problems. II. J. Math. Phys. 14, 916–920 (1973)

    Article  MathSciNet  Google Scholar 

  57. K.M. Case, Orthogonal polynomials from the viewpoint of scattering theory. J. Math. Phys. 15, 2166–2174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  58. K.M. Case, The discrete inverse scattering problem in one dimension. J. Math. Phys. 15, 143–146 (1974)

    Article  MathSciNet  Google Scholar 

  59. K.M. Case, S.C. Chiu, The discrete version of the Marchenko equation in the inverse scattering problem. J. Math. Phys. 14, 1643–1647 (1973)

    Article  MathSciNet  Google Scholar 

  60. K.M. Case, M. Kac, A discrete version of the inverse scattering problem. J. Math. Phys. 14, 594–603 (1973)

    Article  MathSciNet  Google Scholar 

  61. V. Caudrelier, On the inverse scattering method for integrable PDEs on a star graph. Commun. Math. Phys. 338, 893–917 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, New York, 1977)

    Book  MATH  Google Scholar 

  63. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn. (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  64. K. Cherednichenko, A.V. Kiselev, L.O. Silva, Functional model for extensions of symmetric operators and applications to scattering theory. Netw. Heterog. Media 13, 191–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Daudé, F. Nicoleau, Recovering the mass and the charge of a Reissner–Nordström black hole by an inverse scattering experiment. Inverse Prob. 24, 025017 (2008); Corrigendum: Inverse Prob. 25, 059801 (2009)

    Google Scholar 

  66. T. Daudé, F. Nicoleau, Inverse scattering in de Sitter–Reissner–Nordström black hole spacetimes. Rev. Math. Phys. 22, 431–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. P. Deift, E. Trubowitz, Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  68. W.F. Donoghue Jr., On the perturbation of spectra. Commun. Pure Appl. Math. 18, 559–579 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Eckhardt, F. Gesztesy, R. Nichols, A. Sakhnovich, G. Teschl, Inverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentials. Differ. Integr. Equ. 28, 505–522 (2015)

    MATH  Google Scholar 

  70. V. Enss, R. Weder, Inverse potential scattering: a geometrical approach, in Mathematical Quantum Theory II. Schrödinger Operators, ed. by J. Feldman, R. Froese, L.M. Rosen (American Mathematical Society, Providence, 1995), pp. 151–162

    Chapter  Google Scholar 

  71. V. Enss, R. Weder, The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36, 3902–3921 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  72. V. Enss, R. Weder, Uniqueness and reconstruction formulae for inverse N-particle scattering, in Differential Equations and Mathematical Physics, ed. by I. Knowles (International Press, Boston, 1995), pp. 55–66

    MATH  Google Scholar 

  73. V. Enss, R. Weder, Inverse two-cluster scattering. Inverse Prob. 12, 409–418 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Eskin, J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy. Commun. Math. Phys. 173, 199–224 (1995)

    Article  MATH  Google Scholar 

  75. P. Exner, J.P. Keating, P. Kuchment, T. Sunada, A. Teplyaev (eds.), Analysis on Graphs and Its Applications (American Mathematical Society, Providence, 2008)

    Google Scholar 

  76. P. Exner, J. Lipovský, Pseudo-orbit approach to trajectories of resonances in quantum graphs with general vertex coupling: Fermi rule and high-energy asymptotics. J. Math. Phys. 58, 042101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  77. L.D. Faddeev, Uniqueness of solution of the inverse scattering problem. Vestn. Leningr. Univ. 11, 126–130 (1956, in Russian)

    Google Scholar 

  78. L.D. Faddeev, The inverse problem in the quantum theory of scattering. Usp. Mat. Nauk 14, 57–119 (1959, in Russian) [J. Math. Phys. 4, 72–104 (1963) (English translation)]

    Google Scholar 

  79. L.D. Faddeev, Properties of the S-matrix of the one-dimensional Schrödinger equation. Trudy Mat. Inst. Steklov 73, 314–336 (1964, in Russian) [Am. Math. Soc. Transl. (Ser. 2) 65, 139–166 (1967) (English translation)]

    Google Scholar 

  80. L.D. Faddeev, Increasing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR 165, 514–517 (1965, in Russian) [Sov. Phys. Dokl. 10, 1033–1035 (1966) (English translation)]

    Google Scholar 

  81. L.D. Faddeev, Factorization of the S matrix for the multidimensional Schrödinger operator. Dokl. Akad. Nauk SSSR 167, 69–72 (1966, in Russian) [Soviet Phys. Dokl. 11, 209–211 (1966) (English translation)]

    Google Scholar 

  82. L.D. Faddeev, The inverse problem in the quantum theory scattering. II. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. 3, 93–180 (1974, in Russian) [J. Sov. Math. 5, 334–396 (1976) (English translation)]

    Google Scholar 

  83. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986). [Springer, Berlin, 2007 (English translation)]

    MATH  Google Scholar 

  84. M. Falconi, J. Faupin, J. Fröhlich, B. Schubnel, Scattering theory for Lindblad master equations. Commun. Math. Phys. 350, 1185–1218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  85. J. Faupin, J. Fröhlich, Asymptotic completeness in dissipative scattering theory. Adv. Math. 340, 300–362 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Fokas, A Unified Approach to Boundary Value Problems (SIAM, Philadelphia, 2008)

    Book  MATH  Google Scholar 

  87. G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and Their Applications (Nova Science Publishers, New York, 2001)

    MATH  Google Scholar 

  88. C.E. Fröberg, Calculation of the interaction between two particles from the asymptotic phase. Phys. Rev. 72, 519–520 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  89. L. Fu, H. Hochstadt, Inverse theorems for Jacobi matrices. J. Math. Anal. Appl. 47, 162–168 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  90. G. Gardner, J. Green, M. Kruskal, R. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1098 (1967)

    Article  MATH  Google Scholar 

  91. M.G. Gasymov, An inverse problem of scattering theory for a system of Dirac equations of order 2n. Trudy Moskov. Mat. Obšč. 19, 41–112 (1968, in Russian)

    Google Scholar 

  92. M.G. Gasymov, T.T. Džabiev, Solution of the inverse problem by two spectra for the Dirac equation on a finite interval. Akad. Nauk. Azerbaı̆džan SSR Dokl. 22, 3–6 (1966, in Russian)

    Google Scholar 

  93. M.G. Gasymov, B.M. Levitan, Determination of the Dirac system from the scattering phase. Dokl. Akad. Nauk SSSR 167, 1219–1222 (1966, in Russian) [Soviet Math. Dokl. 7, 543–547 (1966) (English translation)]

    Google Scholar 

  94. M.G. Gasymov, B.M. Levitan, The inverse problem for the Dirac system. Dokl. Akad. Nauk SSSR 167, 967–970 (1966, in Russian) [Soviet. Math. Dokl. 7, 495–499 (1966) (English translation)]

    Google Scholar 

  95. I.M. Gel’fand, B.M. Levitan, On the determination of a differential equation by its spectral function. Dokl. Akad. Nauk SSSR (N.S.) 77, 557–560 (1951, in Russian)

    Google Scholar 

  96. I.M. Gel’fand, B.M. Levitan, On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSSR Ser. Mat. 15, 309–360 (1951, in Russian) [Am. Math. Soc. Transl. (Ser. 2) 1, 253–304 (1951) (English translation)]

    Google Scholar 

  97. N.I. Gerasimenko, B.S. Pavlov, A scattering problem on noncompact graphs. Teoret. Mat. Fiz. 74, 345–359 (1988, in Russian) [Theor. Math. Phys. 74, 230–240 (1988) (English translation)]

    Google Scholar 

  98. F. Gesztesy, Inverse spectral theory as influenced by Barry Simon, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Part 2, ed. by F. Gesztesy, P. Deift, C. Galvez, P. Perry, W. Schlag (American Mathematical Society, Providence, 2007), pp. 741–820

    Chapter  Google Scholar 

  99. F. Gesztesy, B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators. Trans. Am. Math. Soc. 348, 349–373 (1996)

    Article  MATH  Google Scholar 

  100. F. Gesztesy, B. Simon, Inverse spectral analysis with partial information of the potential. I. The case of an A.C. component in the spectrum. Helv. Phys. Acta 70, 66–71 (1997)

    Google Scholar 

  101. F. Gesztesy, B. Simon, m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices. J. Anal. Math. 73, 267–297 (1997)

    Google Scholar 

  102. F. Gesztesy, B. Simon, A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. Math. 152, 593–643 (2000)

    MATH  Google Scholar 

  103. F. Gesztesy, B. Simon, Inverse spectral analysis with partial information of the potential. II. The case of discrete spectrum. Trans. Am. Math. Soc. 352, 2765–2787 (2000)

    Article  MATH  Google Scholar 

  104. F. Gesztesy, B. Simon, On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  105. B. Grébert, R. Weder, Reconstruction of a potential on the line that is a priori known on the half line. SIAM J. Appl. Math. 55, 242–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  106. P.G. Grinevich, Rational solitons of the Veselov–Novikov equations and reflectionless two-dimensional potentials at fixed energy. Teor. Mat. Fiz. 69, 307–310 (1986, in Russian) [Theor. Math. Phys. 69, 1170–1172 (1986) (English translation)]

    Google Scholar 

  107. G.S. Guseinov, The determination of the infinite Jacobi matrix from two spectra. Mat. Zametki 23, 709–720 (1978, in Russian)

    Google Scholar 

  108. B. Gutkin, U. Smilansky, Can one hear the shape of a graph? J. Phys. A 34, 6061–6068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  109. R.Z. Halilova, An inverse problem. Izv. Akad. Nauk Azerbaı̆džan SSR Ser. Fiz.-Tehn. Mat. Nauk 1967, 169–175 (1967, in Russian)

    Google Scholar 

  110. M.S. Harmer, Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions. ANZIAM J. 44, 161–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  111. M.S. Harmer, The matrix Schrödinger operator and Schrödinger operator on graphs. Ph.D. Thesis. University of Auckland, Auckland (2004)

    Google Scholar 

  112. M.S. Harmer, Inverse scattering on matrices with boundary conditions. J. Phys. A 38, 4875–4885 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  113. W. Heisenberg, Die beobachtbaren Grössen in der Theorie der Elementarteilchen. Z. Phys. 120, 513–538 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  114. W. Heisenberg, Die beobachtbaren Grössen in der Theorie der Elementarteilchen. II. Z. Phys. 120, 673–702 (1943)

    Article  MATH  Google Scholar 

  115. W. Heisenberg, Die beobachtbaren Grössen in der Theorie der Elementarteilchen. III. Z. Phys. 123, 93–112 (1944)

    Article  MATH  Google Scholar 

  116. D.B. Hinton, A.K. Jordan, M. Klaus, J.K. Shaw, Inverse scattering on the line for a Dirac system. J. Math. Phys. 32, 3015–3030 (1991)

    Article  MathSciNet  Google Scholar 

  117. H. Hochstadt, B. Lieberman, An inverse Sturm–Liouville problem with mixed given data. SIAM J. Appl. Math. 34, 676–680 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  118. A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs (Springer, Berlin, 2007)

    MATH  Google Scholar 

  119. H.T. Ito, An inverse scattering problem for Dirac equations with time-dependent electromagnetic potentials. Publ. RIMS Kyoto Univ. 34, 355–381 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  120. H.T. Ito, Inverse scattering problems for Dirac operator with time-dependent electromagnetic potentials, in Spectral and Scattering Theory and Related Topics (Kyoto University, Kyoto, 1998), pp. 26–35 (Japanese)

    Google Scholar 

  121. P. Joly, M. Kachanovska, A. Semin, Wave propagation in fractal trees. Mathematical and numerical issues. Netw. Heterog. Media 14, 205–264 (2019)

    MATH  Google Scholar 

  122. P. Joly, A. Semin, Mathematical and numerical modeling of wave propagation in fractal trees. C. R. Math. Acad. Sci. Paris 349, 1047–1051 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  123. M. Joshi, Explicitly recovering asymptotics of short-range potentials. Commun. Partial Differ. Equ. 25, 1907–1923 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  124. M. Joshi, A. Sá Barreto, Recovering asymptotics of short-range potentials. Commun. Math. Phys. 193, 197–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  125. M. Joshi, A. Sá Barreto, Determining asymptotics of magnetic fields from fixed energy scattering data. Asymptot. Anal. 21, 61–70 (1999).

    MathSciNet  MATH  Google Scholar 

  126. R. Jost, Über die falschen Nullstellen der Eigenwerte der S-Matrix. Helv. Phys. Acta 20, 256–266 (1947) (German)

    Google Scholar 

  127. P. Jost, W. Kohn, On the relation between phase shift energy levels and the potential. Danske, Vid. Selsk. Mat.-Fys. Medd. 27, 3–19 (1953)

    Google Scholar 

  128. W. Jung, Der geometrische Ansatz zur inversen Streutheorie bei der Dirac-Gleichung (Diplomarbeit RWTH-Aachen, 1996) (German)

    Google Scholar 

  129. W. Jung, Geometrical approach to inverse scattering for the Dirac equation. J. Math. Phys. 38, 39–48 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  130. W. Jung, Gauge transformations and inverse quantum scattering with medium-range magnetic fields. Math. Phys. Electron. J. 11, Paper 5 (2005)

    Google Scholar 

  131. J.B. Kennedy, P. Kurasov, G. Malenová, D. Mugnolo, On the spectral gap of a quantum graph. Ann. Henri Poincaré 17, 2439–2473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  132. M. Klaus, Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line. Inverse Prob. 4, 505–512 (1988)

    Article  MATH  Google Scholar 

  133. V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires. J. Phys. A 32, 595–630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  134. V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires. II: The inverse problem with possible applications to quantum computers. Fortschr. Phys. 48, 703–716 (2000)

    MATH  Google Scholar 

  135. M.G. Krein, Determination of the density of a nonhomogeneous symmetric cord by its frequency spectrum. Dokl. Akad. Nauk SSSR (N.S.) 76, 345–348 (1951, in Russian)

    Google Scholar 

  136. M.G. Krein, Solution of the inverse Sturm–Liouville problem. Dokl. Akad. Nauk SSSR (N.S.) 76, 21–24 (1951, in Russian)

    Google Scholar 

  137. M.G. Krein, On inverse problems for a nonhomogeneous cord. Dokl. Akad. Nauk SSSR (N.S.) 82, 669–672 (1952, in Russian)

    Google Scholar 

  138. M.G. Krein, On the transfer function of a one-dimensional boundary problem of the second order. Dokl. Akad. Nauk SSSR (N.S.) 88, 405–408 (1953, in Russian)

    Google Scholar 

  139. M.G. Krein, On some cases of effective determination of the density of an inhomogeneous cord from its spectral function. Dokl. Akad. Nauk SSSR (N.S.) 93, 617–620 (1953, in Russian)

    Google Scholar 

  140. M.G. Krein, On a method of effective solution of an inverse boundary problem. Dokl. Akad. Nauk SSSR (N.S.) 94, 987–990 (1954, in Russian)

    Google Scholar 

  141. M.G. Krein, On the determination of the potential of a particle from its S-function. Dokl. Akad. Nauk SSSR (N.S.) 105, 433–436 (1955, in Russian)

    Google Scholar 

  142. M.G. Krein, On the theory of accelerants and S-matrices of canonical differential systems. Dokl. Akad. Nauk SSSR 111, 1167–1180 (1956, in Russian)

    Google Scholar 

  143. P. Kuchment, Quantum graphs. I. Some basic structures. Waves Random Media 14, S107–S128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  144. P. Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38, 4887–4900 (2005)

    MATH  Google Scholar 

  145. P. Kurasov, B. Majidzadeh Garjani, Quantum graphs: \(\mathcal {P}\mathcal {T}\)-symmetry and reflection symmetry of the spectrum. J. Math. Phys. 58, 023506 (2017)

    Google Scholar 

  146. P. Kurasov, M. Nowaczyk, Inverse spectral problem for quantum graphs. J. Phys. A 38, 4901–4915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  147. P. Kurasov, F. Stenberg, On the inverse scattering problem on branching graphs. J. Phys. A 35, 101–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  148. L.D. Landau, E.M. Lifschitz, Quantum Mechanics Non-Relativistic Theory, 3rd edn. (Pergamon Press, New York, 1989)

    Google Scholar 

  149. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  150. M. Lee, M. Zworski, A Fermi golden rule for quantum graphs. J. Math. Phys. 57, 092101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  151. N. Levinson, Determination of the potential from the asymptotic phase. Phys. Rev. 75, 1445 (1949)

    Article  MathSciNet  Google Scholar 

  152. N. Levinson, On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. Danske Vid. Selsk. Mat.-Fys. Medd. 25 1–29 (1949)

    MATH  Google Scholar 

  153. B.M. Levitan, Inverse Sturm–Liouville Problems (Nauka, Moscow, 1984, in Russian) [VNU Science Press, Utrecht, 1987 (English translation)]

    Google Scholar 

  154. B.M. Levitan, M.G. Gasymov, Determination of a differential equation by two of its spectra. Usp. Mat. Nauk. 19, 3–63 (1964). [Russ. Math. Surv. 19, 1–63 (1964) (English translation)]

    Google Scholar 

  155. V.A. Marchenko, Transformation operators. Dokl. Akad. Nauk SSSR (N.S.) 74, 185–188 (1950, in Russian)

    Google Scholar 

  156. V.A. Marchenko, On reconstruction of the potential energy from phases of the scattered waves. Dokl. Acad. Nauk SSSR (N.S.) 104, 695–698 (1955, in Russian)

    Google Scholar 

  157. V.A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order. I. Trudy Moskov. Mat. Obšč. 1, 327–420 (1952, in Russian) [Am. Math. Soc. Transl. 101, 1–104 (1973)]

    Google Scholar 

  158. V.A. Marchenko, Sturm–Liouville Operators and Applications (Naukova Dumka, Kiev, 1977, in Russian) [Revised edn., American Mathematical Society, Chelsea Publishing, Providence, 2011 (English translation)]

    Google Scholar 

  159. M. Marletta, S. Naboko, R. Shteremberg, R. Weikard, On the inverse resonance problem for Jacobi operators-uniqueness and stability. J. Anal. Math. 117, 221–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  160. M. Marletta, R. Shterenberg, R. Weikard, On the inverse resonance problem for Schrödinger operators. Commun. Math. Phys. 295, 465–484 (2010)

    Article  MATH  Google Scholar 

  161. B. Matthew, R. Weikard, The inverse resonance problem for left-definite Sturm–Liouville operators. J. Math. Anal. Appl. 423, 1753–1773 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  162. A. Melin, Operator methods for inverse scattering on the real line. Commun. Partial Differ. Equ. 10, 677–766 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  163. R.G. Newton, Connection between the S-matrix and the tensor force. Phys. Rev. D 100, 412–428 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  164. R.G. Newton, Inverse Schrödinger Scattering in Three Dimensions (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  165. R.G. Newton, R. Jost, The construction of potentials from the S-matrix for systems of differential equations. Nuovo Cimento 1, 590–622 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  166. F. Nicoleau, An inverse scattering problem with the Aharonov–Bohm effect. J. Math. Phys. 41, 5223–5237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  167. F. Nicoleau, Inverse scattering for Stark Hamiltonians with short-range potentials. Asymptot. Anal. 35, 349–359 (2003)

    MathSciNet  MATH  Google Scholar 

  168. F. Nicoleau, An inverse scattering problem for short-range systems in a time-periodic electric field. Math. Res. Lett. 12, 885–896 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  169. F. Nicoleau, An inverse scattering problem for the Schrödinger equation in a semiclassical process. J. Math. Pures Appl. 86, 463–470 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  170. F. Nicoleau, Inverse scattering for a Schrödinger operator with a repulsive potential. Acta Math. Sin. 22, 1485–1492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  171. R.G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161, 569–595 (1994)

    Article  MATH  Google Scholar 

  172. R.G. Novikov, Scattering for the Schrödinger equation in multidimension, in Scattering, ed. by E.R. Pike, P.C. Sabatier (Academic, London, 2001), pp. 1729–1740

    Google Scholar 

  173. R.G. Novikov, G.M. Henkin, The \(\bar \delta \)-equation in the multidimensional inverse scattering problem. Usp. Mat. Nauk 42, 93–152 (1987, in Russian) [Russ. Math. Surv. 42, 109–180 (1987) (English translation)]

    Google Scholar 

  174. S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Consultants Bureau, New York, 1984)

    MATH  Google Scholar 

  175. N.N. Novikova, V.M. Markushevich, Uniqueness of the solution of the one-dimensional problem of scattering for potentials located on the positive semiaxis. Comput. Seismol. 18, 164–172 (1987)

    Google Scholar 

  176. J. Pöschel, E. Trubowitz, Inverse Spectral Theory (Academic, Boston, 1987)

    MATH  Google Scholar 

  177. A.G. Ramm, B. Simon, A new approach to inverse spectral theory. III. Short-range potentials. J. Anal. Math. 80, 319–334 (2000)

    MATH  Google Scholar 

  178. W. Rundell, P. Sacks, On the determination of potentials without bound state data. J. Comput. Appl. Math. 55, 325–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  179. A. Rybkin, On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Prob. Imaging 3, 139–149 (2009)

    Article  MATH  Google Scholar 

  180. M. Sandoval Romero, R. Weder, The initial value problem, scattering and inverse scattering, for Schrödinger equations with a potential and a non-local nonlinearity. J. Phys. A 39, 11461–11478 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  181. L.O. Silva, R. Weder, On the two spectra inverse problem for semi-infinite Jacobi matrices. Math. Phys. Anal. Geom. 9, 263–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  182. L.O. Silva, R. Weder, The two-spectra inverse problem for semi-infinite Jacobi matrices in the limit-circle case. Math. Phys. Anal. Geom. 11, 131–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  183. B. Simon, The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  184. B. Simon, A new approach to inverse spectral theory. I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  185. J.W. Strutt Baron Rayleigh, The Theory of Sound, vol. I (Macmillan, London, 1877)

    Google Scholar 

  186. G. Teschl, Trace formulas and inverse spectral theory for Jacobi operators. Commun. Math. Phys. 196, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  187. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices (American Mathematical Society, Providence, 2000)

    MATH  Google Scholar 

  188. G.D. Valencia, R. Weder, High-velocity estimates and inverse scattering for quantum N-body systems with Stark effect. J. Math. Phys. 53, 102105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  189. F. Visco-Comandini, M. Mirrahimi, M. Sorine, Some inverse scattering problems on star-shaped graphs. J. Math. Anal Appl. 378, 343–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  190. R. Weder, Multidimensional inverse scattering: the reconstruction problem. Inverse Prob. 6, 267–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  191. R. Weder, Characterization of the scattering data in multidimensional inverse scattering theory. Inverse Prob. 7, 461–489 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  192. R. Weder, Generalized limiting absorption method and multidimensional inverse scattering theory. Math. Methods Appl. Sci. 14, 509–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  193. R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory. Inverse Problems 7, 927–938 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  194. R. Weder, Multidimensional inverse scattering in an electric field. J. Funct. Anal. 139, 441–465 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  195. R. Weder, A time-dependent method for inverse scattering, in Modern Mathematical Methods in Diffraction Theory and Its Applications in Engineering, ed. by E. Meister (Peter Lang, Frankfurt, 1997), pp. 251–262

    Google Scholar 

  196. R. Weder, Inverse scattering for N-body systems with time-dependent potentials, in Inverse Problems of Wave Propagation and Diffraction, ed. by G. Chavent, P.C. Sabatier (Springer, Berlin, 1997), pp. 27–46

    Chapter  MATH  Google Scholar 

  197. R. Weder, Inverse scattering for the nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 22, 2089–2103 (1997)

    Article  MATH  Google Scholar 

  198. R. Weder, Multidimensional inverse problem in perturbed stratified media. J. Differ. Equ. 152, 191–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  199. R. Weder, Inverse scattering for the nonlinear Schrödinger equation and \(L^p-L^{\acute p}\) estimates, in Spectral and Scattering Theory and Related Topics (Kyoto University, Kyoto, 2000), pp. 157–168 (Japanese)

    Google Scholar 

  200. R. Weder, Inverse scattering on the line for the nonlinear Klein–Gordon equation with a potential. J. Math. Anal. Appl. 252, 102–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  201. R. Weder, \(L^p-L^{\acute {p}}\) estimates for the Schrödinger equation and inverse scattering, in Differential Equations and Mathematical Physics, ed. by R. Weikard, G. Weinstein (International Press, Cambridge, 2000), pp. 435–448

    Google Scholar 

  202. R. Weder, \(L^p-L^{\acute p}\) estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

    Google Scholar 

  203. R. Weder, Uniqueness of inverse scattering for the nonlinear Schrödinger equation and reconstruction of the potential and the nonlinearity, in Mathematical and Numerical Aspects of Wave Propagation, ed. by A. Bermúdez, D. Gómez, C. Hazard, P. Joly, J.E. Roberts (SIAM, Philadelphia, 2000), pp. 631–634

    MATH  Google Scholar 

  204. R. Weder, Direct and inverse scattering for the nonlinear Schrödinger equation with a potential, in VI Seminar on Free Boundary Value Problems and Their Applications. Part 1, ed. by D.A. Tarzia (Universidad Austral, Rosario, 2001, in Spanish), pp. 13–20

    Google Scholar 

  205. R. Weder, Inverse scattering for the non-linear Schrödinger equation: reconstruction of the potential and the non-linearity. Math. Methods Appl. Sci. 24, 245–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  206. R. Weder, Inverse scattering for the nonlinear Schrödinger equation. II. Reconstruction of the potential and the nonlinearity in the multidimensional case. Proc. Am. Math. Soc. 129, 3637–3645 (2001)

    MATH  Google Scholar 

  207. R. Weder, The time-dependent approach to inverse scattering, in Partial Differential Equations and Spectral Theory, ed. by M. Demuth, B.-W. Schultz (Birkhäuser, Basel, 2001), pp. 321–328

    Chapter  Google Scholar 

  208. R. Weder, Multidimensional inverse scattering for the nonlinear Klein–Gordon equation with a potential. J. Differ. Equ. 184, 62–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  209. R. Weder, The Aharonov–Bohm effect and time-dependent inverse scattering theory. Inverse Prob. 18, 1041–1056 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  210. R. Weder, The time-dependent approach to inverse scattering, in Advances in Differential Equations and Mathematical Physics, ed. by Y. Karpeshina, G. Stolz, R. Weikard, Y. Zeng (American Mathematical Society, Providence, 2003), pp. 359–377

    Chapter  Google Scholar 

  211. R. Weder, Inverse scattering at a fixed quasi-energy for potentials periodic in time. Inverse Prob. 20, 893–917 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  212. R. Weder, Inverse scattering with time-periodic potentials, in Partial Differential Equations and Inverse Problems, ed. by C. Conca, R. Manásevich, G. Uhlmann, M.S. Vogelius (American Mathematical Society, Providence, 2004), pp. 393–402

    Chapter  MATH  Google Scholar 

  213. R. Weder, Time-dependent methods in inverse scattering theory, in New Analytic and Geometric Methods in Inverse Problems, ed. by K. Bingham, Ya.V. Kurylev, E. Somersalo (Springer, Berlin, 2004), pp. 367–381

    Google Scholar 

  214. R. Weder, Scattering for the forced non-linear Schrödinger equation with a potential on the half-line. Math. Methods Appl. Sci. 28, 1219–1236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  215. R. Weder, The forced non-linear Schrödinger equation with a potential on the half-line. Math. Methods Appl. Sci. 28, 1237–1255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  216. R. Weder, The electric Aharonov–Bohm effect. J. Math. Phys. 52, 052109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  217. R. Weder, High-velocity estimates, inverse scattering and topological effects, in Spectral Theory and Differential Equations, ed. by E. Khruslov, L. Pastur, D. Shepelsky (American Mathematical Society, Providence, 2014), pp. 225–251

    MATH  Google Scholar 

  218. R. Weder, Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions. J. Math. Phys. 57, 112101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  219. R. Weder, The number of eigenvalues of the matrix Schrödinger operator on the half line with general boundary conditions. J. Math. Phys. 58, 102107 (2017); Erratum: J. Math. Phys. 60, 019902 (2019)

    Google Scholar 

  220. R. Weder, Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions. J. Math. Phys. 56, 092103 (2015); Erratum, J. Math. Phys. 60, 019901 (2019)

    Google Scholar 

  221. R. Weder, D. Yafaev, On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity. Inverse Prob. 21, 1937–1952 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  222. R. Weder, D. Yafaev, Inverse scattering at a fixed energy for long-range potentials. Inverse Prob. Imaging 1, 217–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  223. J. Weidmann, Spectral Theory of Ordinary Differential Operators (Springer, Berlin, 1987)

    Book  MATH  Google Scholar 

  224. R. Weikard, A local Borg–Marchenko theorem for difference equations with complex coefficients, in Partial Differential Equations and Inverse Problems, ed. by C. Conca, R. Manásevich, G. Uhlmann, M.S. Vogelius (American Mathematical Society, Providence, 2004), pp. 403–410

    Chapter  MATH  Google Scholar 

  225. J.A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 52, 1107–1122 (1937)

    Article  MATH  Google Scholar 

  226. V.A. Yurko, Inverse Spectral Problems for Differential Operators and Their Applications (Gordon and Breach Science Publishers, Amsterdam, 2000)

    Book  MATH  Google Scholar 

  227. V.A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory (VSP, Utrecht, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aktosun, T., Weder, R. (2021). Introduction. In: Direct and Inverse Scattering for the Matrix Schrödinger Equation. Applied Mathematical Sciences, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-030-38431-9_1

Download citation

Publish with us

Policies and ethics