Skip to main content

The Romantic Brain: Secure Attachment Activates the Brainstem Centers of Well-Being

  • Chapter
  • First Online:
Emotional Engineering, Vol. 8
  • 562 Accesses

Abstract

Attachment security is a critical resource for individuals to preserve relationship quality. Insecure attachment reduces relationship quality and can seriously influence mental and physical health. Adult attachment style is thought to develop through relationships with a caregiver during childhood and social interactions during adolescence according to epigenetic modification and reinforcement learning mechanisms, and is an important factor for developing and maintaining relationship quality. The neurochemicals such as oxytocin (OXT), dopamine (DA), and serotonin (5-HT) have been shown to be critical for pair-bond formation and maintenance by animal experiments. However, the neural basis underlying the human adult attachment has not yet been clarified. We investigated whether the brain regions involved in these neurochemicals are correlated with adult attachment style in healthy male participants using functional magnetic resonance imaging (fMRI). Significantly activated brain regions, while they were viewing their partner compared to unknown females included the hypothalamus, substantia nigra/ventral tegmental area (SN/VTA), dorsal raphe nucleus (DRN) and locus coeruleus (LC), in which each of these regions is involved in OXT, DA, 5-HT and norepinephrine, respectively. Moreover, higher activity in these brainstem regions was associated with less attachment anxiety. These brainstem regions are primarily important for basic survival functions and well-being. Based on these results, in humans, neurochemicals such as OXT, DA, and 5-HT may be also critical for developing and maintaining relationships, and adult attachment style may be developed based on the epigenetic modification and reinforcement learning mechanisms through relationships with a caregiver during childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rilling JK, Young LJ (2014) The biology of mammalian parenting and its effect on offspring social development. Science 345:771–776

    Article  Google Scholar 

  2. Dobolyi A, Cservenak M, Young LJ (2018) Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol. https://doi.org/S0091-3022(18)30050-5

    Google Scholar 

  3. Forsling M (1986) Regulation of oxytocin release. neurobiology of oxytocin. In: Current topics neuroendocrinology, vol 6. Springer Nature, Switzerland

    Chapter  Google Scholar 

  4. Barberis C, Tribollet E (1996) Vasopressin and oxytocin receptors in the central nervous system. Crit Rev Neurobiol 10:119154

    Google Scholar 

  5. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683

    Article  Google Scholar 

  6. Francis DD, Diorio J, Liu D et al (1999) Monogenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155

    Article  Google Scholar 

  7. Kikusui T, Mori Y (2009) Behavioural and neurochemical consequences of early weaning in rodents. J Neuroendocrinol 21:427–431

    Article  Google Scholar 

  8. Curley JP, Rock V, Moynihan AM et al (2010) Developmental shifts in the behavioral phenotypes of inbred mice: the role of postnatal and juvenile social experiences. Behav Genet 40:220–232

    Article  Google Scholar 

  9. Mogi K, Nagasawa M, Kikusui T (2011) Developmental consequences and biological significance of mother-infant bonding. Prog Neuro-Psychoph 35:1232–1241

    Article  Google Scholar 

  10. Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA 89:5981–5985

    Article  Google Scholar 

  11. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7:1048–1054

    Article  Google Scholar 

  12. Liu Y, Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121:537–544

    Article  Google Scholar 

  13. Young ET, Saario J, Kacherovsky N et al (1998) Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 273:32080–32087

    Article  Google Scholar 

  14. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  Google Scholar 

  15. Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  Google Scholar 

  16. Aragona BJ, Liu Y, Dameron A et al (2003) Opposite modulation of social attachment by D1-and D2-type dopamine receptor activation in nucleus accumbens shell. Horm Behav 44:37

    Google Scholar 

  17. Aragona BJ, Wang Z (2009) Dopamine regulation of social choice in a monogamous rodent species. Front Behav Neurosci. https://doi.org/10.3389/neuro.08.015.2009

    Article  Google Scholar 

  18. Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76:142–159. https://doi.org/10.1016/j.neuron.2012.09.025

    Article  Google Scholar 

  19. Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139:5015–5033

    Article  Google Scholar 

  20. Bartz JA, Hollander E (2006) The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior. Horm Behav 50:518–528

    Article  Google Scholar 

  21. Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiat 44:151–162

    Article  Google Scholar 

  22. Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  Google Scholar 

  23. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  Google Scholar 

  24. Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  Google Scholar 

  25. Weaver IC, Diorio J, Seckl JR et al (2004) Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann NY Acad Sci 1024:182–212

    Article  Google Scholar 

  26. Dolen G, Darvishzadeh A, Huang KW et al (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184

    Article  Google Scholar 

  27. Larke RH, Maninger N, Ragen BJ et al (2016) Serotonin 1A agonism decreases affiliative behavior in pair-bonded titi monkeys. Horm Behav 86:71–77

    Article  Google Scholar 

  28. Sawchenko PE, Swanson LW, Steinbusch HW et al (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277:355–360

    Article  Google Scholar 

  29. Yoshida M, Takayanagi Y, Inoue K et al (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29:2259–2271

    Article  Google Scholar 

  30. Garcia CY (1998) Temporal course of the basic components of love throughout relationships. Psychol Spain 2:76–86

    Google Scholar 

  31. Berscheid E (2010) Love in the fourth dimension. Annu Rev Psychol 61:1–25

    Article  Google Scholar 

  32. Starka L (2007) Endocrine factors of pair bonding. Prague Med Rep 108:297–305

    Google Scholar 

  33. Marazziti D, Akiskal HS, Rossi A et al (1999) Alteration of the platelet serotonin transporter in romantic love. Psychol Med 29:741–745

    Article  Google Scholar 

  34. Marazziti D, Canale D (2004) Hormonal changes when falling in love. Psychoneuroendocrinology 29:931–936

    Article  Google Scholar 

  35. Emanuele E, Politi P, Bianchi M et al (2006) Raised plasma nerve growth factor levels associated with early-stage romantic love. Psychoneuroendocrinology 31:288–294

    Article  Google Scholar 

  36. Esch T, Stefano GB (2005) Love promotes health. Neuro Endocrinol Lett 26:264–267

    Google Scholar 

  37. Aron A, Fisher H, Mashek DJ et al (2005) Reward, motivation, and emotion systems associated with early-stage intense romantic love. J Neurophysiol 94:327–337

    Article  Google Scholar 

  38. Acevedo BP, Aron A, Fisher HE et al (2012) Neural correlates of long-term intense romantic love. Soc Cogn Affect Neurosci 7:145–159

    Article  Google Scholar 

  39. Noriuchi M, Kikuchi Y, Mori K et al (2019) The orbitofrontal cortex modulates parenting stress in the maternal brain. Sci Rep-UK. https://doi.org/10.1038/s41598-018-38402-9

    Article  Google Scholar 

  40. Noriuchi M, Kikuchi Y, Senoo A (2008) The functional neuroanatomy of maternal love: mother’s response to infant’s attachment behaviors. Biol Psychiat 63:415–423

    Article  Google Scholar 

  41. Kikuchi Y, Noriuchi M (2016) Neural basis of maternal love as a vital human emotion. In: Fukuda S (ed) Emotional engineering, vol 4. Springer International Publishing (Springer Nature), Online ISBN 978-3-319-29433-9, Print ISBN 978-3-319-29432-2

    Google Scholar 

  42. Bartels A, Zeki S (2004) The neural correlates of maternal and romantic love. Neuroimage 21:1155–1166

    Article  Google Scholar 

  43. Kiecolt-Glaser J, Newton T (2001) Marriage and health: his and hers. Psychol Bull 127:472–503

    Article  Google Scholar 

  44. Proulx C, Helms H, Buehler C (2007) Marital quality and personal well-being: a meta-analysis. J Marriage Fam 69:576–593

    Article  Google Scholar 

  45. Coan JA, Schaefer HS, Davidson RJ (2006) Lending a hand: social regulation of the neural response to threat. Psychol Sci 17:1032–1039

    Article  Google Scholar 

  46. Riehl-Emde A, Thomas V, Willi J (2003) Love: an important dimension in marital research and therapy. Fam Process 42:253–267

    Article  Google Scholar 

  47. Brennan KA, Clark CL, Shaver PR (1998) Self-report measurement of adult romantic attachment: an integrative overview. In: Simpson JA, Rholes WS (eds) Attachment theory and close relationships. Guilford Press, New York

    Google Scholar 

  48. Campbell L, Simpson JA, Boldry J et al (2005) Perceptions of conflict and support in romantic relationships: the role of attachment anxiety. J Pers Soc Psychol 88:510–531

    Article  Google Scholar 

  49. Davila J, Karney BR, Bradbury TN (1999) Attachment change processes in the early years of marriage. J Pers Soc Psychol 76:783–802

    Article  Google Scholar 

  50. Feeney JA (2002) Attachment, marital interaction, and relationship satisfaction: a diary study. Pers Relationship 9:39–55

    Article  Google Scholar 

  51. Shaver PR, Schachner DA, Mikulincer M (2005) Attachment style, excessive reassurance seeking, relationship processes, and depression. Pers Soc Psychol Bull 31:343–359

    Article  Google Scholar 

  52. Mikulincer M, Erev I (1991) Attachment style and the structure of romantic love. Br J Soc Psychol 30:273–291

    Article  Google Scholar 

  53. Ein-Dor T, Verbeke JMI, W, Mokry M et al (2018) Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults. Attach Hum Dev. https://doi.org/10.1080/14616734.2018.1446451

    Article  Google Scholar 

  54. Kikuchi Y, Matsutani Y, Mori K et al (2018) Brainstem activity predicts attachment-related anxiety. Neuropsychiatry (London) 8:324–334. https://doi.org/10.4172/Neuropsychiatry.1000354

    Article  Google Scholar 

  55. Bartels A, Zeki S (2000) The neural basis of romantic love. NeuroReport 11:3829–3834

    Article  Google Scholar 

  56. Fraley RC, Waller NG, Brennan KA (2000) An item-response theory analysis of self-report measures of adult attachment. J Pers Soc Psychol 78:350–365

    Article  Google Scholar 

  57. Fraley RC, Chris ME, Heffernan ME et al (2011) The experiences in close relationships—relationship structures questionnaire: a method for assessing attachment orientations across relationships. Psychol Assess 23:615–625

    Article  Google Scholar 

  58. Camara E, Rodriguez-Fornells A, Ye Z et al (2009) Reward networks in the brain captured by connectivity measures. Front Neurosci 3:350–362

    Article  Google Scholar 

  59. Delgado MR, Locke HM, Stenger VA et al (2003) Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 3:27–38

    Article  Google Scholar 

  60. O’Doherty J, Dayan P, Schultz J et al (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  Google Scholar 

  61. Parker G, Tupling H, Brown L (1979) A parental bonding instrument. Brit J Med Psychol 52:1–10

    Article  Google Scholar 

  62. Mori K, Noriuchi M, Kikuchi Y (2015) Mother’s brain activity and its correlation with the mother-to-infant bonding. The organization for the human brain mapping (OHBM) 2015. USA

    Google Scholar 

  63. Fisher HE (1998) Lust, attraction, and attachment in mammalian reproduction. Hum Nat 9:23–52

    Article  Google Scholar 

  64. Aragona BJ, Liu Y, Curtis JT et al (2003) A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci 23:3483–3490

    Article  Google Scholar 

  65. Carter CS, DeVries AC, Getz LL (1995) Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci Biobehav Rev 19:303–314

    Article  Google Scholar 

  66. Wang ZX, Hulihan TJ, Insel TR (1997) Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles. Brain Res 767:321–332

    Article  Google Scholar 

  67. Winslow J, Hastings N, Carter CS et al (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545–548

    Article  Google Scholar 

  68. Sroufe LA, Waters E (1977) Attachment as an organizational construct. Child Dev 48:1184–1199

    Article  Google Scholar 

  69. Master SL, Eisenberger NI, Taylor SE et al (2009) A picture’s worth. partner photographs reduce experimentally induced pain. Psychol Sci 20:1316–1318

    Article  Google Scholar 

  70. Fuchs E, Flügge G (2003) Chronic social stress: effects on limbic brain structures. Physiol Behav 79:417–427

    Article  Google Scholar 

  71. Micallef J, Blin O (2001) Neurobiology and clinical pharmacology of obsessive-compulsive disorder. Clin Neuropharmacol 24:191–207

    Article  Google Scholar 

  72. Young SN, Leyton M (2002) The role of serotonin in human mood and social interaction. insight from altered tryptophan levels. Pharmacol Biochem Behav 71:857–865

    Article  Google Scholar 

  73. Bailer UF, Frank G, Henry S et al (2007) Serotonin transporter binding after recovery from eating disorders. Psychopharmacology 195:315–324

    Article  Google Scholar 

  74. Leonardo ED, Hen R (2006) Genetics of affective and anxiety disorders. Annu Rev Psychol 57:117–137

    Article  Google Scholar 

  75. Aston-Jones G, Iba M, Clayton E et al (2007) The locus coeruleus and regulation of behavioral flexibility and attention: clinical implications. In: Ordway GA, Schwartz MA, Frazer A (eds) Brain norepinephrine: neurobiology and therapeutics. Cambridge University Press, UK

    Google Scholar 

  76. Chan-Palay V, Asan E (1989) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol 287:357–372

    Article  Google Scholar 

  77. Arango V, Underwood MD, Mann JJ (1996) Fewer pigmented locus coeruleus neurons in suicide victims: preliminary results. Biol Psychiat 39:112–120

    Article  Google Scholar 

  78. Ressler KJ, Nemeroff CB (1999) Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiat 46:1219–1233

    Article  Google Scholar 

  79. Brady LS (1994) Stress, antidepressant drugs, and the locus coeruleus. Brain Res Bull 35:545–556

    Article  Google Scholar 

  80. Plaznik A, Kostowski W (1983) The interrelationship between brain noradrenergic and dopaminergic neuronal systems in regulating animal behavior: possible clinical implications. Psychopharmacol Bull 19:5–11

    Google Scholar 

  81. Grenhoff J, Nisell M, Ferr S et al (1993) Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J Neural Transm 93:11–25

    Article  Google Scholar 

  82. Harmer CJ, Hill SA, Taylor MJ et al (2003) Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity. Am J Psychiat 160:990–992

    Article  Google Scholar 

  83. Sterpenich V, D’Argembeau A, Desseilles M et al (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26:7416–7423

    Article  Google Scholar 

  84. Bowlby J (1973) Attachment and loss. Separation: anxiety and anger, vol 2. Basic Books, New York

    Google Scholar 

  85. Mikulincer M, Shaver PR (2007) Attachment in adulthood: structure, dynamics, and change. Guilford Press, New York

    Google Scholar 

  86. Mikulincer M, Shaver PR (2009) An attachment and behavioral systems perspective on social support. (Special Issue: Social Support.) J Soc Pers Relat 26:7–19

    Article  Google Scholar 

  87. Singleton O, Hölzel BK, Vangel M et al (2014) Change in brainstem gray matter concentration following a mindfulness-based intervention is correlated with improvement in psychological well-being. Front Hum Neurosci 18. https://doi.org/10.3389/fnhum.2014.00033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kikuchi, Y., Noriuchi, M. (2020). The Romantic Brain: Secure Attachment Activates the Brainstem Centers of Well-Being. In: Fukuda, S. (eds) Emotional Engineering, Vol. 8. Springer, Cham. https://doi.org/10.1007/978-3-030-38360-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38360-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38359-6

  • Online ISBN: 978-3-030-38360-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics