Skip to main content

A Mathematical Model of Emotions for Novelty

  • Chapter
  • First Online:
Emotional Engineering, Vol. 8

Abstract

This chapter discusses a mathematical model of emotions associated with novelty at variable uncertainty levels. The model predicts dominant emotion dimensions, arousal (intensity of emotion), and valence (positivity or negativity). To represent the arousal level, we used Kullback–Leibler divergence of Bayesian posterior from the prior, which we termed information gain. The information gain corresponds to surprise, a high-arousal emotion, upon experiencing a novel event. Based on Berlyne’s hedonic function (or the inverse U-shaped curve, so-called Wundt curve), we formalized valence as a summation of reward and aversion systems that are modeled as sigmoid functions of information gain. We derived information gain as a function of prediction errors (i.e., differences between the prediction and the reality), uncertainty (i.e., variance of the prior that is proportional to prior entropy), and sensory noise. This functional model predicted an interaction effect of prediction errors and uncertainty on information gain, which we termed the arousal crossover effect. Our model’s predictions of arousal help identify positively accepted novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141

    Article  Google Scholar 

  2. Berlyne DE (1970) Novelty, complexity, and hedonic value. Percept Psychophys 8(5):279–286

    Article  Google Scholar 

  3. Berlyne DE (1967) Arousal and reinforcement. Nebr Symp Motiv 15:1–110

    Google Scholar 

  4. Berlyne DE (1971) Aesthetics and psychobiology. Appleton-Century-Crofts, New York

    Google Scholar 

  5. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429. https://doi.org/10.1038/415429a

    Article  Google Scholar 

  6. Itti L, Baldi P (2009) Bayesian surprise attracts human attention. Vision Res 49(10):1295–1306. https://doi.org/10.1016/j.visres.2008.09.007

    Article  Google Scholar 

  7. Kersten D, Mamassian P, Yuille A (2004) Object perception as bayesian inference. Annu Rev Psychol 55(1):271–304. https://doi.org/10.1146/annurev.psych.55.090902.142005

    Article  Google Scholar 

  8. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  Google Scholar 

  9. Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–247

    Article  Google Scholar 

  10. Lang PJ (1995) The emotion probe: studies of motivation and attention. Am Psychol 50(5):372

    Article  Google Scholar 

  11. Loewy R (1951) Never leave well enough alone: the personal record of an industrial designer from lipsticks to locomotives, Simon & Schuster

    Google Scholar 

  12. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9:1432. https://doi.org/10.1038/nn1790

    Article  Google Scholar 

  13. Mauss IB, Robinson MD (2009) Measures of emotion: a review. Cogn Emot 23(2):209–237. https://doi.org/10.1080/02699930802204677

    Article  Google Scholar 

  14. Russell JA (1980) A circumplex model of affect. J Personal Soc Psychol 39(6):1161

    Article  Google Scholar 

  15. Saunders R (2012) Towards autonomous creative systems: a computational approach. Cogn Comput 4(3):216–225. https://doi.org/10.1007/s12559-012-9131-x

    Article  MathSciNet  Google Scholar 

  16. Schultz W, Dayan P, Montague PR (1997) A Neural substrate of prediction and reward. Science 275(5306):1593–1599. https://doi.org/10.1126/science.275.5306.1593

    Article  Google Scholar 

  17. Sekoguchi T, Sakai Y, Yanagisawa H (2019) Mathematical model of emotional habituation to novelty: modeling with Bayesian update and information theory. In: Proceedings of the IEEE international conference on systems, man & cybernetics, SMC2019, Bari, Italy

    Google Scholar 

  18. Shannon CE, Weaver W, Blahut RE, Hajek B (1949) The mathematical theory of communication, vol 117. University of Illinois press Urbana

    Google Scholar 

  19. Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9(4):578–585

    Article  Google Scholar 

  20. Yanagisawa H (2016a) A computational model of perceptual expectation effect based on neural coding principles. Journal of Sensory Studies 31(5):430–439. https://doi.org/10.1111/joss.12233

    Article  Google Scholar 

  21. Yanagisawa H (2016b) Expectation effect theory and its modeling. In: Fukuda S (eds) Emotional engineering, vol 4. Springer, Cham

    Google Scholar 

  22. Yanagisawa H, Kawamata O, Ueda K (2019) Modeling emotions associated with novelty at variable uncertainty levels: a Bayesian approach. Front Comput Neurosci 13(2). https://doi.org/10.3389/fncom.2019.00002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyoshi Yanagisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yanagisawa, H. (2020). A Mathematical Model of Emotions for Novelty. In: Fukuda, S. (eds) Emotional Engineering, Vol. 8. Springer, Cham. https://doi.org/10.1007/978-3-030-38360-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38360-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38359-6

  • Online ISBN: 978-3-030-38360-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics