Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 280 Accesses

Abstract

Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-state rheology because the stress distribution inside the material cannot be controlled with sufficient precision. Here we introduce and validate a method that overcomes this obstacle. Rapidly propagating shear fronts are generated and used to establish well-controlled local stress conditions that sweep across the material. Exploiting such transient flows, we can track how a dense suspension approaches its shear-jammed state dynamically, and quantitatively map out the onset stress for solidification in a state diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The boundary slip is minor according to our measurements. It only happens at extremely high ϕ and Σ. Even if the boundary slightly slips, as long as the slip is not intermittent, the conclusions above are still valid by replacing U 0 with the actual speed of the flow right next to the boundary.

References

  1. A.J. Liu, S.R. Nagel, Jamming is not just cool any more. Nature 396(6706), 21–22 (1998)

    Article  ADS  Google Scholar 

  2. E. Brown, H.M. Jaeger, Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77(4), 046602 (2014)

    Google Scholar 

  3. X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 1276–1279 (2011)

    Article  ADS  Google Scholar 

  4. N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009)

    Article  Google Scholar 

  5. J.F. Brady, G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105 (1985)

    Article  ADS  Google Scholar 

  6. H.A. Barnes, Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33(2), 329 (1989)

    Google Scholar 

  7. E. Brown, H.M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56(4), 875 (2012)

    Google Scholar 

  8. Q. Xu, S. Majumdar, E. Brown, H.M. Jaeger, Shear thickening in highly viscous granular suspensions. Europhys. Lett. 107(6), 68004 (2014)

    Google Scholar 

  9. D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Jamming by shear. Nature 480(7377), 355–358 (2011)

    Article  ADS  Google Scholar 

  10. I.R. Peters, S. Majumdar, H.M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature 532(7598), 214–217 (2016)

    Article  ADS  Google Scholar 

  11. N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J. Cayer-Barrioz, H.J. Herrmann, N.D. Spencer, L. Isa, Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111(10), 108301 (2013)

    Google Scholar 

  12. F. Boyer, E. Guazzelli, O. Pouliquen, Unifying suspension and granular rheology. Phys. Rev. Lett. 107(18), 188301 (2011)

    Google Scholar 

  13. J. Comtet, G. Chatte, A. Nigues, L. Bocquet, A. Siria, A. Colin, Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8, 15633 (2017)

    Article  ADS  Google Scholar 

  14. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)

    Google Scholar 

  15. R. Mari, R. Seto, J.F. Morris, M.M. Denn, Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91(5), 052302 (2015)

    Google Scholar 

  16. A. Singh, R. Mari, M.M. Denn, J.F. Morris, A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)

    Article  ADS  Google Scholar 

  17. M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014)

    Google Scholar 

  18. N.M. James, E. Han, R.A.L. de la Cruz, J. Jureller, H.M. Jaeger, Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17(11), 965–970 (2018)

    Article  ADS  Google Scholar 

  19. B.M. Guy, M. Hermes, W.C. Poon, Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115(8), 088304 (2015)

    Google Scholar 

  20. Z. Pan, H. de Cagny, B. Weber, D. Bonn, S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(3), 032202 (2015)

    Google Scholar 

  21. B. Liu, M. Shelley, J. Zhang, Focused force transmission through an aqueous suspension of granules. Phys. Rev. Lett. 105(18), 188301 (2010)

    Google Scholar 

  22. S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012)

    Article  ADS  Google Scholar 

  23. R. Maharjan, S. Mukhopadhyay, B. Allen, T. Storz, E. Brown, Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 97(5), 052602 (2018)

    Google Scholar 

  24. M.I. Smith, R. Besseling, M.E. Cates, V. Bertola, Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat. Commun. 1, 114 (2010)

    Article  ADS  Google Scholar 

  25. S. Manneville, L. Bécu, A. Colin, High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur. Phys. J. Appl. Phys. 28(3), 361–373 (2004)

    Article  ADS  Google Scholar 

  26. E. Han, I.R. Peters, H.M. Jaeger, High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun. 7, 12243 (2016)

    Article  ADS  Google Scholar 

  27. E. Han, M. Wyart, I.R. Peters, H.M. Jaeger, Shear fronts in shear-thickening suspensions. Phys. Rev. Fluids 3(7), 073301 (2018)

    Google Scholar 

  28. S. Majumdar, I.R. Peters, E. Han, H.M. Jaeger, Dynamic shear jamming under extension in dense granular suspensions. Phys. Rev. E 95, 012603 (2017)

    Article  ADS  Google Scholar 

  29. M. Hermes, B.M. Guy, W.C.K. Poon, G. Poy, M.E. Cates, M. Wyart, Unsteady flow and particle migration in dense, non-Brownian suspensions. J. Rheol. 60(5), 905–916 (2016)

    Article  ADS  Google Scholar 

  30. R. Mari, R. Seto, J.F. Morris, M.M. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58(6), 1693–1724 (2014)

    Article  ADS  Google Scholar 

  31. H. Nakanishi, S. Nagahiro, N. Mitarai, Fluid dynamics of dilatant fluids. Phys. Rev. E 85(1), 011401 (2012)

    Google Scholar 

  32. B. Saint-Michel, T. Gibaud, S. Manneville, Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening cornstarch suspension. Phys. Rev. X 8(3), 031006 (2018)

    Google Scholar 

  33. V. Rathee, D.L. Blair, J.S. Urbach, Localized stress fluctuations drive shear thickening in dense suspensions. Proc. Natl. Acad. Sci. U.S.A. 114(33), 8740–8745 (2017)

    Article  ADS  Google Scholar 

  34. W.H. Boersma, P.J.M. Baets, J. Laven, H.N. Stein, Time-dependent behavior and wall slip in concentrated shear thickening dispersions. J. Rheol. 35(6), 1093–1120 (1991)

    Article  ADS  Google Scholar 

  35. A. Singh, R. Mari, M.M. Denn, J.F. Morris, A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)

    Article  ADS  Google Scholar 

  36. R.N. Chacko, R. Mari, M.E. Cates, S.M. Fielding, Dynamic vorticity banding in discontinuously shear thickening suspensions. Phys. Rev. Lett. 121(10), 108003 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, E. (2020). Rheology in the Shear Jamming Regime. In: Transient Dynamics of Concentrated Particulate Suspensions Under Shear. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38348-0_5

Download citation

Publish with us

Policies and ethics