Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 307 Accesses

Abstract

We introduce medical ultrasound as a tool to measure properties of particulate suspensions such as the elastic modulus and the porosity of microparticles in the suspensions. More importantly, since dense suspensions are in general optically opaque, it is difficult to directly observe flows deep inside. Ultrasound imaging can solve this problem. By pushing the frame rate of the ultrasound to 10,000 frames per second, we were able to study the flows inside dense suspensions with sufficient spatial and temporal resolutions. In this chapter, we introduce our ultrasound system, show results from multiple calibrations, and describe technical details on how we performed measurements of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here “couple” means that the acoustic impedance is matched. Details see Sect. 2.6.

  2. 2.

    Gassmann’s equation applies in the “low frequency limit,” which means that the time for the pore pressure to equilibrate is sufficiently long [85, 86]. Though the central frequency of our ultrasound signal was 5 MHz, which is not normally considered a “low frequency” wave, we could still use this equation reasonably, because the cornstarch particles are small (∼ 10 μm) and permeable, thus the time it takes for the Biot wave to diffuse through the whole particle is sufficiently short.

References

  1. A.J. Liu, S.R. Nagel, Jamming is not just cool any more. Nature 396(6706), 21–22 (1998)

    Article  ADS  Google Scholar 

  2. D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Jamming by shear. Nature 480(7377), 355–358 (2011)

    Article  ADS  Google Scholar 

  3. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)

    Google Scholar 

  4. M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014)

    Google Scholar 

  5. S. von Kann, J.H. Snoeijer, D. Lohse, D. van der Meer, Nonmonotonic settling of a sphere in a cornstarch suspension. Phys. Rev. E 84(6), 060401 (2011)

    Google Scholar 

  6. M. Roche, E. Myftiu, M.C. Johnston, P. Kim, H.A. Stone, Dynamic fracture of nonglassy suspensions. Phys. Rev. Lett. 110(14), 148304 (2013)

    Google Scholar 

  7. S.R. Nagel, Experimental soft-matter science. Rev. Mod. Phys. 89(2), 025002 (2017)

    Google Scholar 

  8. M.L. Cowan, I.P. Jones, J.H. Page, D.A. Weitz, Diffusing acoustic wave spectroscopy. Phys. Rev. E 65, 066605 (2002)

    Article  ADS  Google Scholar 

  9. S. Manneville, L. Bécu, A. Colin, High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur. Phys. J. Appl. Phys. 28(3), 361–373 (2004)

    Article  ADS  Google Scholar 

  10. T. Gallot, C. Perge, V. Grenard, M.A. Fardin, N. Taberlet, S. Manneville, Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev. Sci. Instrum. 84(4), 045107 (2013)

    Google Scholar 

  11. X. Jia, C. Caroli, B. Velicky, Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82(9), 1863–1866 (1999)

    Article  ADS  Google Scholar 

  12. V. Langlois, X. Jia, Acoustic probing of elastic behavior and damage in weakly cemented granular media. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 023206 (2014)

    Google Scholar 

  13. R.S.C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, Oxford, 2007)

    Google Scholar 

  14. C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, M. Tanter, Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579), 499–502 (2015)

    Article  ADS  Google Scholar 

  15. N. Goldenfeld, L.P. Kadanoff, Simple lessons from complexity. Science 284, 87–89 (1999)

    Article  ADS  Google Scholar 

  16. R.J. Urick, A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 18(11), 983 (1947)

    Google Scholar 

  17. A.B. Wood, A Textbook of Sound (G. Bell, London, 1941)

    Google Scholar 

  18. V.A. Del Grosso, C.W. Mader, Speed of sound in pure water. J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972)

    Article  ADS  Google Scholar 

  19. N. Bilaniuk, G.S.K. Wong, Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93(3), 1609–1612 (1993)

    Article  ADS  Google Scholar 

  20. E. Han, N. Van Ha, H.M. Jaeger, Measuring the porosity and compressibility of liquid-suspended porous particles using ultrasound. Soft Matter 13(19), 3506–3513 (2017)

    Article  ADS  Google Scholar 

  21. R.L. Whistler, J.N. Bemiller, E.F. Paschall, Starch: Chemistry and Technology, 2nd edn. (Academic, Cambridge, 1984)

    Google Scholar 

  22. R.F. Tester, J. Karkalas, X. Qi, Starch - composition, fine structure and architecture. J. Cereal Sci. 39(2), 151–165 (2004)

    Article  Google Scholar 

  23. N.H. Hellman, E.H. Melvin, Surface area of starch and its role in water sorption. J. Am. Chem. Soc. 72, 5186–5188 (1950)

    Article  Google Scholar 

  24. L. Sair, W.R. Fetzer, Water sorption by starches. Ind. Eng. Chem. 36(3), 205–208 (1944)

    Article  Google Scholar 

  25. E. Brown, H.M. Jaeger, Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 103(8), 086001 (2009)

    Google Scholar 

  26. F. Gassmann, Uber die elastizitat poroser medien. Ver. Natur. Gesellschaft 96, 1–23 (1951)

    MathSciNet  MATH  Google Scholar 

  27. R.J.S. Brown, J. Korringa, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4), 9 (1975)

    Google Scholar 

  28. M.L. Batzle, D. Han, R. Hofmann, Fluid mobility and frequency-dependent seismic velocity - direct measurements. Geophysics 71(1), N1–N9 (2006)

    Article  Google Scholar 

  29. D.L. Johnson, Theory of frequency dependent acoustics in patchy-saturated porous media. J. Acoust. Soc. Am. 110(2), 682–694 (2001)

    Article  ADS  Google Scholar 

  30. W.S. Ament, Sound propagation in gross mixtures. J. Acoust. Soc. Am. 25(4), 638–641 (1953)

    Article  ADS  Google Scholar 

  31. L. Gibiansky, S. Torquato, Rigorous connection between physical properties of porous rocks. J. Geophys. Res. 103(B10), 23911–23932 (1998)

    Article  ADS  Google Scholar 

  32. W. Pabst, E. Gregorova, G. Ticha, Elasticity of porous ceramics - a critical study of modulus - porosity relations. J. Eur. Ceram. Soc. 26(7), 1085–1097 (2006)

    Article  Google Scholar 

  33. S.R. Waitukaitis, Impact activated solidification of cornstarch and water suspensions. Thesis, The University of Chicago (2014)

    Google Scholar 

  34. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10(11), 823–837 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, E. (2020). Ultrasound Techniques for Studying Suspensions. In: Transient Dynamics of Concentrated Particulate Suspensions Under Shear. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38348-0_2

Download citation

Publish with us

Policies and ethics