Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 691 Accesses

Abstract

Throughout this thesis we have investigated the salient features of plasmonics and light–matter interactions in various contexts and material platforms, and our considerations have comprised a diverse toolkit of classical, semiclassical, and quantum mechanical treatments. Special emphasis has been given to the incorporation of quantum surface corrections for rigorously modeling the emergence of nonclassical behavior in the nanoscopic limit. In closing, we summarize the contents of each chapter, followed by a brief discussion about new and potentially interesting opportunities arising from this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodrigo D, Limaj O, Janner D, Etezadi D, García deAbajo FJ, Pruneri V, Altug H (2015) Science 349(6244):165. https://science.sciencemag.org/content/349/6244/165, https://doi.org/10.1126/science.aab2051

  2. Kawata S, Tani T (1996) Opt Lett 21(21):1768 (1996). http://ol.osa.org/abstract.cfm?URI=ol-21-21-1768, https://doi.org/10.1364/OL.21.001768

  3. Zhang J, Liu W, Zhu Z, Yuan X, Qin S (2016) Sci Rep 6:38086. https://doi.org/10.1038/srep38086

  4. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Phys Rev Lett 97:053002. https://doi.org/10.1103/PhysRevLett.97.053002

  5. Calafell IA, Cox JD, Radonjić M, Saavedra JRM, García de Abajo FJ, Rozema LA, Walther P (2019) npj Quantum Inf. 5:37. https://doi.org/10.1038/s41534-019-0150-2

  6. Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012) ACS Nano 6(2): 1766. https://doi.org/10.1021/nn204780e

  7. Christensen T, Wang W, Jauho AP, Wubs M, Mortensen NA (2014) Phys Rev B 90:241414. https://doi.org/10.1103/PhysRevB.90.241414

  8. Wedel KO, Mortensen NA, Thygesen KS, Wubs M (2018) Phys Rev B 98:155412. https://doi.org/10.1103/PhysRevB.98.155412

  9. Apell SP, Echenique PM, Ritchie RH Ultramicroscopy 65(1):53. http://www.sciencedirect.com/science/article/pii/S0304399196000551, https://doi.org/10.1016/S0304-3991(96)00055-1

  10. Garcia-Molina R, Gras-Marti A, Ritchie RH (1985) Phys Rev B 31:121. https://doi.org/10.1103/PhysRevB.31.121

  11. Boardman AD, Garcia-Molina R, Gras-Marti A, Louis E (1985) Phys Rev B 32:6045.https://doi.org/10.1103/PhysRevB.32.6045

  12. Chen H (2009) J Opt A Pure Appl Opt 11(7):075102. https://doi.org/10.1088/1464-4258/11/7/075102

  13. Luo Y, Pendry JB, Aubry A (2010) Nano Lett 10(10):4186. https://doi.org/10.1021/nl102498s

  14. Kadic M, Guenneau S, Enoch S, Huidobro PA, Martín-Moreno L, García-Vidal FJ, Renger J, Quidant R (2012) Nanophotonics 1:51. https://doi.org/10.1515/nanoph-2012-0011

  15. Ford GW, Weber WH (1984) Phys Rep 113(4):195. http://www.sciencedirect.com/science/article/pii/037015738490098X, https://doi.org/10.1016/0370-1573(84)90098-X

  16. Chulkov EV, Silkin VM, Echenique PM (1997) Surf Sci 391(1):L1217. http://www.sciencedirect.com/science/article/pii/S0039602897006535, https://doi.org/10.1016/S0039-6028(97)00653-5

  17. Chulkov EV, Silkin VM, Echenique PM (1999) Surf Sci 437(3):330. http://www.sciencedirect.com/science/article/pii/S0039602899006688, https://doi.org/10.1016/S0039-6028(99)00668-8

  18. Chulkov EV, Osma J, Sarrıa I, Silkin VM, Pitarke JM (1999) Surf Sci 433–435:882. http://www.sciencedirect.com/science/article/pii/S003960289900148X, https://doi.org/10.1016/S0039-6028(99)00148-X

  19. Reiche D, Dalvit DAR, Busch K, Intravaia F (2017) Phys Rev B 95:155448. https://doi.org/10.1103/PhysRevB.95.155448

  20. Oelschläger M, Busch K, Intravaia F (2018) Phys Rev A 97:062507. https://doi.org/10.1103/PhysRevA.97.062507

  21. Reiche D, Oelschläger M, Busch K, Intravaia F (2019) J Opt Soc Am B 36(4):C52. http://josab.osa.org/abstract.cfm?URI=josab-36-4-C52, https://doi.org/10.1364/JOSAB.36.000C52

  22. Echarri AR, Cox JD, García de Abajo FJ (2019) Optica 6(5):630. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-6-5-630, https://doi.org/10.1364/OPTICA.6.000630

  23. Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187. http://science.sciencemag.org/content/357/6347/187, https://doi.org/10.1126/science.aan2735

  24. Lee IH, Martin-Moreno L, Mohr DA, Khaliji K, Low T, Oh SH (2018) ACS Photonics 5(6):2208. https://doi.org/10.1021/acsphotonics.8b00062

  25. Chen S, Autore M, Li J, Li P, Alonso-González P, Yang Z, Martin-Moreno L, Hillenbrand R, Nikitin AY (2017) ACS Photonics 4(12):3089. https://doi.org/10.1021/acsphotonics.7b00654

  26. Lee IH, Yoo D, Avouris P, Low T, Oh SH (2019) Nat Nanotechnol 14(4):313. https://doi.org/10.1038/s41565-019-0363-8

  27. Palik ED (1997) Handbook of optical constants of solids, vol. 1–5. Academic Press

    Google Scholar 

  28. Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt PS, Hinsche NF, Gjerding MN, Torelli D, Larsen PM, Riis-Jensen AC, Gath J, Jacobsen KW, Mortensen JJ, Olsen T, Thygesen KS (2018) 2D Mater. 5(4):042002. http://c2db.fysik.dtu.dk, https://doi.org/10.1088/2053-1583/aacfc1

  29. Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli IE, Cepellotti A, Pizzi G, Marzari N (2018) Nat Nanotechnol 13:246.https://doi.org/10.1038/s41565-017-0035-5, https://doi.org/10.24435/materialscloud:2017.0008/v3

  30. Yang Y, Di Z, Yan W, Agarwal A, Zheng M, Joannopoulos JD, Lalanne P, Christensen T, Berggren KK, Soljačić M (2019) A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576(7786):248–252. https://doi.org/10.1038/s41586-019-1803-1

  31. Cuevas JC, García-Vidal FJ (2018) ACS Photonics 5(10):3896. https://doi.org/10.1021/acsphotonics.8b01031

  32. Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen NA, Stenger N (2015) Nat Commun 6:8788. https://www.nature.com/articles/ncomms9788, https://doi.org/10.1038/ncomms9788

  33. Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociakand M, Hillenkamp M (2018) Nat Phys. https://doi.org/10.1038/s41567-018-0345-z

  34. Apell P (1981) Phys Scr 24(4):795. https://doi.org/10.1088/0031-8949/24/4/019

  35. Luo Y, Zhao R, Pendry JB (2014) Proc Natl Acad Sci USA 111(52):18422. https://www.pnas.org/content/111/52/18422, https://doi.org/10.1073/pnas.1420551111

  36. Bordag M, Klimchitskaya GL, Mohideen U, Mostepanenko VM (2009) Advances in the casimir effect. Oxford University Press, New York

    Book  Google Scholar 

  37. Tighineanu P, Sørensen AS, Stobbe S, Lodahl P (2017) Quantum dots for quantum information technologies. Springer, Berlin, pp 165–198. https://doi.org/10.1007/978-3-319-56378-7_5

  38. Andersen ML, Stobbe S, Sørensen AS, Lodahl P (2011) Nat Phys 7(3):215. https://www.nature.com/articles/nphys1870, https://doi.org/10.1038/nphys1870

  39. Jun Ahn K, Knorr A (2003) Phys Rev B 68:161307. https://doi.org/10.1103/PhysRevB.68.161307

  40. Rukhlenko ID, Handapangoda D, Premaratne M, Fedorov AV, Baranov AV, Jagadish C (2009) Opt Express 17(20):17570. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-20-17570, https://doi.org/10.1364/OE.17.017570

  41. Stobbe S, Kristensen PT, Mortensen JE, Hvam JM, Mørk J, Lodahl P (2012) Phys Rev B 86:085304. https://doi.org/10.1103/PhysRevB.86.085304

  42. Zheng K, Žídek K, Abdellah M, Zhu N, Chábera P, Lenngren N, Chi Q, Pullerits T (2014) J Am Chem Soc 136(17):6259. https://doi.org/10.1021/ja411127w

  43. Neuman T, Esteban R, Casanova D, García-Vidal FJ, Aizpurua J (2018) Nano Lett 18(4):2358. https://doi.org/10.1021/acs.nanolett.7b05297

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo André Dias Gonçalves .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, P.A.D. (2020). Conclusions and Outlook. In: Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38291-9_9

Download citation

Publish with us

Policies and ethics