Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Graphene has been hailed as a wonder material due to its singular optoelectronic properties. Notably, most of the awe-inspiring electronic properties of graphene can be understood from elementary considerations about its crystal structure and through the application of standard models of bandstructure theory. In this spirit, in this chapter we provide a cursory review of graphene’s bandstructure and its basic electronic properties. These considerations will then supply us with the necessary ingredients for determining the optical response of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, the \(\text{ sp }^2\)-hybridization—occurring in both graphene and graphite—involves the superposition of the \(2\text{ s }\) orbital with two \(2\text{ p }\) orbitals, say, the \(2\text{ p }_x\) and the \(2\text{ p }_y\) states. On the other hand, the chemical bonding in diamond is due \(\text{ sp }^3\)-hybridization where the four chemical bonds are equivalent (this is also the case, for instance, in methane (\(\text{ CH }_4\)), and in graphane (hydrogenated graphene) [7, 8] or fluorographene (fluorinated graphene) [9, 10]).

  2. 2.

    These can be determined by exploiting the relationship \(\mathbf {a}_i \cdot \mathbf {b}_j = 2\pi \delta _{ij}\) [12].

  3. 3.

    Curiously, the first theoretical description of graphene was actually under the tight-binding approximation, developed by Wallace in 1947 [17] in the context of the band theory of graphite, long before the isolation of monolayer graphene in 2004(–2005) [18,19,20,21].

  4. 4.

    The spin degree of freedom has been omitted here since spin-orbit effects are weak in graphene [25, 26].

  5. 5.

    This observation has contributed to the development of \(\mathbf {k} \cdot \mathbf {p}\) method. See, for instance, Ref. [27].

  6. 6.

    While also performing a unitary transformation of the basis to in order to exclude the \(e^{\pm i\pi /6}\) phase factors (for convenience alone).

  7. 7.

    The Dirac equation with vanishing mass is sometimes also known as the Weyl equation or the Dirac–Weyl equation.

  8. 8.

    This can be easily seen by writing the Dirac Hamiltonians in polar form; for instance, for the \({\varvec{K}}\) valley, Eq. (3.10) [or Eq. (3.12a)], transforms to:

    $$\begin{aligned} \varvec{\mathcal {H}}_{\varvec{K}} = \hbar v_F q \begin{bmatrix} 0 &{} e^{-i\theta _{\mathbf {q}}} \\ e^{i\theta _{\mathbf {q}}} &{} 0 \end{bmatrix}. \end{aligned}$$

    .

  9. 9.

    For hole-doped graphene, the expressions presented throughout this section are nevertheless valid upon performing the replacement \(E_F \rightarrow |E_F|\).

  10. 10.

    Recall that absorption is encoded in the real part of the system’s conductivity, Re \(\sigma \).

  11. 11.

    The noninteracting density-density correlation function \(\chi _0(q,\omega )\) also goes by the name of noninteracting (or bare) density-density response function, or polarizability, Lindhard function [36], or even as the bare pair-bubble diagram in the language of Feynman diagrammatics [2, 37, 38].

  12. 12.

    The detailed derivation of the density-density response function for independent electrons is somewhat lengthy and therefore here we simply outline the main steps and results. A thorough derivation of the density-density response function for the noninteracting homogeneous 3D electron gas can be found in a number of textbooks in condensed matter theory, see, for instance, Refs. [37,38,39,40,41]. The version for a homogeneous 2D electron gas with parabolic dispersion is outlined in Refs. [39, 40], whereas the derivation of the same quantity for graphene is presented in Refs. [2, 42, 43].

  13. 13.

    The derivation of this result can be found in Refs. [2, 42, 43], and it relies on the use of standard techniques of complex analysis, such as, for instance, the application of the Sokhotski–Plemelj formula: \(\lim _{\eta \rightarrow 0^+} \int _{-\infty }^{\infty } \frac{f(x)}{x \pm i \eta } dx = \mathcal {P} \int _{-\infty }^{\infty } \frac{f(x)}{x} dx \mp i \pi f(0)\), where \(\mathcal {P}\) denotes the Cauchy principal value.

  14. 14.

    Clearly, in the longwavelength limit, i.e., \(q \rightarrow 0\) (vertical transitions only), the local version of Pauli blocking encountered in Eqs. (3.21) and Fig. 3.4 is reinstated.

  15. 15.

    In this context, besides the works referenced in the text, it is also just and appropriate to mention other seminal contributions made by a number of people during the 1950s, including, for instance, Bohm and Pines [48,49,50,51,52,53], Brout and Sawada [54,55,56], and Nozières and Pines [57,58,59]. Indeed, these works established the existence of collective plasma oscillations due to the long-range Coulomb interaction between electrons in a homogeneous electron gas, and are often considered as the foundational bedrock for the quantum theory of plasmons. The term “plasmon” was introduced by Pines [53] as the quantum of elementary excitation associated with such collective oscillation.

References

  1. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109. https://doi.org/10.1103/RevModPhys.81.109

  2. Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore. http://www.worldscientific.com/worldscibooks/10.1142/9948, https://doi.org/10.1142/9948

  3. Katsnelson MI (2012) Graphene: carbon in two dimensions. Cambridge University Press. https://doi.org/10.1017/CBO9781139031080

  4. Pauling L (1931) J Am Chem Soc 53(4):1367. https://doi.org/10.1021/ja01355a027

    Article  Google Scholar 

  5. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, New York

    MATH  Google Scholar 

  6. Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes. William Andrew Publishing, Oxford

    Google Scholar 

  7. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401. https://doi.org/10.1103/PhysRevB.75.153401

  8. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323(5914):610. https://science.sciencemag.org/content/323/5914/610, https://doi.org/10.1126/science.1167130

  9. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010) Small 6(24):2877. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201001555, https://doi.org/10.1002/smll.201001555

  10. Samarakoon DK, Chen Z, Nicolas C, Wang XQ (2011) Small 7(7):965. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201002058, https://doi.org/10.1002/smll.201002058

  11. Grosso G, Parravicini GP (2013) Solid state physics, 2nd edn. Academic Press

    Google Scholar 

  12. Ashcroft NW, Mermin ND (1976) Solid state physics. Harcourt College Publishers, New York

    MATH  Google Scholar 

  13. Singleton J (2010) Band theory and electronic properties of solids, 1st edn. Oxford Master Series in Physics. Oxford University Press

    Google Scholar 

  14. Peres NMR (2010) Rev Mod Phys 82:2673. https://doi.org/10.1103/RevModPhys.82.2673

  15. Fiolhais C, Marques MA, Ullrich CA, Nogueira F (eds) (2003) A primer in density functional theory. Lecture notes in physics. Springer, New York

    Google Scholar 

  16. Kohanoff J (2006) Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press. https://doi.org/10.1017/CBO9780511755613

  17. Wallace PR (1947) Phys Rev 71:622. https://doi.org/10.1103/PhysRev.71.622

  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666. https://science.sciencemag.org/content/306/5696/666, https://doi.org/10.1126/science.1102896

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197. https://www.nature.com/articles/nature04233, https://doi.org/10.1038/nature04233

  20. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Nature 438:201. https://www.nature.com/articles/nature04235, https://doi.org/10.1038/nature04235

  21. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102(30):10451. https://www.pnas.org/content/102/30/10451, https://doi.org/10.1073/pnas.0502848102

  22. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press

    Google Scholar 

  23. McCann E (eds) (2012) Graphene nanoelectronics: metrology, synthesis, properties and applications. Springer, pp. 237–275. https://doi.org/10.1007/978-3-642-22984-8_8

  24. Reich S, Maultzsch J, Thomsen C, Ordejón P (2002) Phys Rev B 66:035412. https://doi.org/10.1103/PhysRevB.66.035412

  25. Min H, Hill JE, Sinitsyn NA, Sahu BR, Kleinman L, MacDonald AH (2006) Phys Rev B 74:165310. https://doi.org/10.1103/PhysRevB.74.165310

  26. Yao Y, Ye F, Qi XL, Zhang SC, Fang Z (2007) Phys Rev B 75:041401. https://doi.org/10.1103/PhysRevB.75.041401

  27. Voon LCLY, Willatzen M (2009) The \(k \cdot p\) method. Springer

    Google Scholar 

  28. Semenoff GW (1984) Phys Rev Lett 53:2449. https://doi.org/10.1103/PhysRevLett.53.2449

  29. Ando T (2005) J Phys Soc Jpn 74(3):777. https://doi.org/10.1143/JPSJ.74.777

    Article  ADS  Google Scholar 

  30. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Adv Phys 59(4):261. https://doi.org/10.1080/00018732.2010.487978

    Article  ADS  Google Scholar 

  31. Ando T, Nakanishi T, Saito R (1998) J Phys Soc Jpn 67(8):2857. https://doi.org/10.1143/JPSJ.67.2857

    Article  ADS  Google Scholar 

  32. Falkovsky LA, Varlamov AA (2007) Eur Phys J B 56(4):281. https://doi.org/10.1140/epjb/e2007-00142-3

    Article  ADS  Google Scholar 

  33. Falkovsky LA, Pershoguba SS (2007) Phys Rev B 76:153410. https://doi.org/10.1103/PhysRevB.76.153410

  34. Stauber T, Peres NMR, Geim AK (2008) Phys Rev B 78:085432. https://doi.org/10.1103/PhysRevB.78.085432

  35. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320(5881):1308. https://science.sciencemag.org/content/320/5881/1308, https://doi.org/10.1126/science.1156965

  36. Lindhard J, Danske Videnskab KGL (1954) Selskab Mat-Fys Medd 28

    Google Scholar 

  37. Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics: an introduction. Oxford Graduate Texts. Oxford University Press

    Google Scholar 

  38. Jishi RA (2013) Feynman diagram techniques in condensed matter physics. Cambridge University Press. https://doi.org/10.1017/CBO9781139177771

  39. Giuliani G, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press. https://doi.org/10.1017/CBO9780511619915

  40. Sólyom J (2010) Fundamentals of the physics of solids. Springer

    Google Scholar 

  41. Mahan GD (2000) Many-particle physics, 3rd edn. Springer, New York

    Book  Google Scholar 

  42. Wunsch B, Stauber T, Sols F, Guinea F (2006) New J Phys 8(12):318. https://doi.org/10.1088/1367-2630/8/12/318

    Article  Google Scholar 

  43. Hwang EH, Das Sarma S (2007) Phys Rev B 75:205418. https://doi.org/10.1103/PhysRevB.75.205418

  44. García de Abajo FJ (2014) ACS Photon 1(3):135. https://doi.org/10.1021/ph400147y

    Article  Google Scholar 

  45. Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Nat Mater 14:421. https://www.nature.com/articles/nmat4169, https://doi.org/10.1038/nmat4169

  46. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Nat Photon 7(5):394. http://www.doi.org/10.1038/nphoton.2013.57, https://doi.org/10.1038/nphoton.2013.57

  47. Maldague PF (1978) Surf Sci 73:296. http://www.sciencedirect.com/science/article/pii/0039602878905071, https://doi.org/10.1016/0039-6028(78)90507-1

  48. Bohm D, Pines D (1950) Phys Rev 80:903. https://doi.org/10.1103/PhysRev.80.903.2

  49. Bohm D, Pines D (1951) Phys Rev 82:625. https://doi.org/10.1103/PhysRev.82.625

  50. Pines D, Bohm D (1952) Phys Rev 85:338. https://doi.org/10.1103/PhysRev.85.338

  51. Bohm D, Pines D (1953) Phys Rev 92:609. https://doi.org/10.1103/PhysRev.92.609

  52. Pines D (1953) Phys Rev 92:626. https://doi.org/10.1103/PhysRev.92.626

  53. Pines D (1956) Rev Mod Phys 28:184. https://doi.org/10.1103/RevModPhys.28.184

  54. Brout R (1957) Phys Rev 108:515. https://doi.org/10.1103/PhysRev.108.515

  55. Sawada K (1957) Phys Rev 106:372. https://doi.org/10.1103/PhysRev.106.372

  56. Sawada K, Brueckner KA, Fukuda N, Brout R (1957) Phys Rev 108:507. https://doi.org/10.1103/PhysRev.108.507

  57. Nozières P, Pines D (1958) Phys Rev 109:741. https://doi.org/10.1103/PhysRev.109.741

  58. Nozières P, Pines D (1958) Phys Rev 109:762. https://doi.org/10.1103/PhysRev.109.762

  59. Nozières P, Pines D (1958) Phys Rev 109:1062. https://doi.org/10.1103/PhysRev.109.1062

  60. Ehrenreich H, Cohen MH (1959) Phys Rev 115:786. https://doi.org/10.1103/PhysRev.115.786

  61. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd edn. Springer

    Google Scholar 

  62. García de Abajo FJ (2010) Rev Mod Phys 82:209. https://doi.org/10.1103/RevModPhys.82.209

  63. Mermin ND (1970) Phys Rev B 1:2362. https://doi.org/10.1103/PhysRevB.1.2362

  64. Greene MP, Lee HJ, Quinn JJ, Rodriguez S (1969) Phys Rev 177:1019. https://doi.org/10.1103/PhysRev.177.1019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo André Dias Gonçalves .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, P.A.D. (2020). Electronic and Optical Properties of Graphene. In: Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38291-9_3

Download citation

Publish with us

Policies and ethics