Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 714 Accesses

Abstract

Plasmonics—the central topic of this thesis—lies precisely at the intersection between materials science and electromagnetism, or, else, between condensed matter physics and photonics. Broadly speaking, plasmonics is a sub-branch of physics that focuses on the study of plasmons and plasmon-enabled phenomena. Plasmons are self-sustained collective excitations of the free-electron plasma mediated by the Coulomb interaction between its charge carriers. Here, we introduce and contextualize the field of plasmonics, followed by a summary of the scope of this thesis, its structure, and its contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.R. Council (1975) Materials and man’s needs: materials science and engineering—volume i, the history, scope, and nature of materials science and engineering. The National Academies Press, Washington, DC. https://www.nap.edu/catalog/10436/materials-and-mans-needs-materials-science-and-engineering-volume-i, https://doi.org/10.17226/10436

  2. Darrigol O (2003) Electrodynamics from Ampère to Einstein. Oxford University Press

    Google Scholar 

  3. Maradudin AA, Barnes WL, Sambles JR (eds) (2014) Modern plasmonics, 1st edn. Elsevier

    Google Scholar 

  4. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

    Google Scholar 

  5. Pelton M, Bryant GW (2013) Introduction to metal-nanoparticle plasmonics. Wiley, New York

    Google Scholar 

  6. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Rep Prog Phys 70(1):1. https://iopscience.iop.org/article/10.1088/0034-4885/70/1/R01/meta, https://doi.org/10.1088/0034-4885/70/1/r01

  7. Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore. http://www.worldscientific.com/worldscibooks/10.1142/9948, https://doi.org/10.1142/9948

  8. Bohm D, Pines D (1951) Phys Rev 82:625. https://doi.org/10.1103/PhysRev.82.625

  9. Pines D, Bohm D (1952) Phys Rev 85:338. https://doi.org/10.1103/PhysRev.85.338

  10. Bohm D, Pines D (1953) Phys Rev 92:609. https://doi.org/10.1103/PhysRev.92.609

  11. Pines D (1953) Phys Rev 92:626. https://doi.org/10.1103/PhysRev.92.626

  12. Pines D (1956) Rev Mod Phys 28:184. https://doi.org/10.1103/RevModPhys.28.184

  13. Giuliani G, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press. https://doi.org/10.1017/CBO9780511619915

  14. Mahan GD (2000) Many-particle physics, 3rd edn. Springer, New York

    Book  Google Scholar 

  15. Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics: an introduction. Oxford graduate texts. Oxford University Press

    Google Scholar 

  16. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824. https://www.nature.com/articles/nature01937, https://doi.org/10.1038/nature01937

  17. Gramotnev DK, Bozhevolnyi SI (2010) Nat Photon 4(2):83. https://www.nature.com/articles/nphoton.2009.282, https://doi.org/10.1038/nphoton.2010.282

  18. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Nat Mater 9:193. https://doi.org/10.1038/nmat2630

    Article  ADS  Google Scholar 

  19. Hao E, Schatz GC (2004) J Chem Phys 120(1):357. https://doi.org/10.1063/1.1629280

    Article  ADS  Google Scholar 

  20. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Nature 440:508. https://doi.org/10.1038/nature04594

    Article  ADS  Google Scholar 

  21. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667. https://doi.org/10.1103/PhysRevLett.78.1667

    Article  ADS  Google Scholar 

  22. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) MRS Bull 30(5):368–375. https://doi.org/10.1557/mrs2005.100

    Article  Google Scholar 

  23. Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Opt Express 14(2):847. http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-847, https://doi.org/10.1364/OPEX.14.000847

  24. Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002. https://doi.org/10.1103/PhysRevLett.96.113002

  25. Russell KJ, Liu TL, Cui S, Hu EL (2012) Nat Photon 6:459. https://www.nature.com/articles/nphoton.2012.112, https://doi.org/10.1038/nphoton.2012.112

  26. Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH (2014) Nat Photon 8:835. https://www.nature.com/articles/nphoton.2014.228, https://doi.org/10.1038/nphoton.2014.228

  27. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23(6):741. https://www.nature.com/articles/nbt1100, https://doi.org/10.1038/nbt1100

  28. Aćimović SS, Kreuzer MP, González MU, Quidant R (2009) ACS Nano 3(5):1231. https://doi.org/10.1021/nn900102j

    Article  Google Scholar 

  29. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Nano Lett 10(7):2342. https://doi.org/10.1021/nl9041033

    Article  ADS  Google Scholar 

  30. Mayer KM, Hafner JH (2011) Chem Rev 111(6):3828. https://doi.org/10.1021/cr100313v

    Article  Google Scholar 

  31. Brolo AG (2012) Nat Photon 6:709. https://doi.org/10.1038/nphoton.2012.266

    Article  ADS  Google Scholar 

  32. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100(23):13549. https://www.pnas.org/content/100/23/13549, https://doi.org/10.1073/pnas.2232479100

  33. Lal S, Clare SE, Halas NJ (2008) Acc Chem Res 41(12):1842. https://doi.org/10.1021/ar800150g

    Article  Google Scholar 

  34. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Nat Biotechnol 32:490. https://doi.org/10.1038/nbt.2886

    Article  Google Scholar 

  35. Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley

    Google Scholar 

  36. Shvets G, Tsukerman I (eds) (2011) Plasmonics and plasmonic metamaterials. World Scientific

    Google Scholar 

  37. Fischer H, Martin OJF (2008) Opt Express 16(12):9144. https://doi.org/10.1364/OE.16.009144

    Article  ADS  Google Scholar 

  38. Novotny L, van Hulst N (2011) Nat Photonics 5:83. https://doi.org/10.1038/nphoton.2010.237

    Article  ADS  Google Scholar 

  39. Atwater HA (2007) Sci Am 296:56. https://www.scientificamerican.com/article/the-promise-of-plasmonics/, https://doi.org/10.1038/scientificamerican0407-56

  40. Khurgin JB (2015) Nat Nanotechnol 10:2. https://doi.org/10.1038/s41565-017-0035-5

    Article  ADS  Google Scholar 

  41. Boriskina SV, Cooper TA, Zeng L, Ni G, Tong JK, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G (2017) Adv Opt Photon 9(4):775. http://aop.osa.org/abstract.cfm?URI=aop-9-4-775, https://doi.org/10.1364/AOP.9.000775

  42. Fernández-Domínguez AI, García-Vidal FJ, Martín-Moreno L (2017) Nat Photon 11(1):8. https://www.nature.com/articles/nphoton.2016.258

  43. Kauranen M, Zayats AV (2012) Nat Photon 6:737–748. https://doi.org/10.1038/nphoton.2012.244

    Article  ADS  Google Scholar 

  44. Panoiu NC, Sha WEI, Lei DY, Li GC (2018) J Opt 20(8):083001. https://iopscience.iop.org/article/10.1088/2040-8986/aac8ed, https://doi.org/10.1088/2040-8986/aac8ed

  45. Kristensen A, Yang JKW, Bozhevolnyi SI, Link S, Nordlander P, Halas NJ, Mortensen NA (2016) Nat Rev Mater 2:16088. https://doi.org/10.1038/natrevmats.2016.88

    Article  ADS  Google Scholar 

  46. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Nano Lett 14(8):4499. https://doi.org/10.1021/nl5014986

    Article  ADS  Google Scholar 

  47. Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A (2016) Nat Nanotechnol 11:325. https://doi.org/10.1038/nnano.2015.285

    Article  ADS  Google Scholar 

  48. Yu R, Mazumder P, Borrelli NF, Carrilero A, Ghosh DS, Maniyara RA, Baker D, García de Abajo FJ, Pruneri V (2016) ACS Photon 3(7):1194. https://doi.org/10.1021/acsphotonics.6b00090

    Article  Google Scholar 

  49. Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C (2013) Nat Photon 7(2):128. https://www.nature.com/articles/nphoton.2012.340, https://doi.org/10.1038/nphoton.2012.340

  50. Törmä P, Barnes WL (2014) Rep Prog Phys 78(1):013901. https://iopscience.iop.org/article/10.1088/0034-4885/78/1/013901/meta, https://doi.org/10.1088/0034-4885/78/1/013901

  51. Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Nature 535(7610):127. https://www.nature.com/articles/nature17974, https://doi.org/10.1038/nature17974

  52. Flick J, Rivera N, Narang P (2018) Nanophotonics 7(9):1479. https://doi.org/10.1515/nanoph-2018-0067

    Article  Google Scholar 

  53. Andersen ML, Stobbe S, Sørensen AS, Lodahl P (2011) Nat Phys 7(3):215. https://www.nature.com/articles/nphys1870, https://doi.org/10.1038/nphys1870

  54. Rivera N, Kaminer I, Zhen B, Joannopoulos JD, Soljačić M (2016) Science 353(6296):263. http://science.sciencemag.org/content/353/6296/263, https://doi.org/10.1126/science.aaf6308

  55. Cuartero-González A, Fernández-Domínguez AI (2018) ACS Photon 5(8):3415. https://doi.org/10.1021/acsphotonics.8b00678

    Article  Google Scholar 

  56. Gonçalves PAD, Christensen T, Rivera N, Jauho, AP, Mortensen NA, Soljačić, M (2020) Plasmon-emitter interactions at the nanoscale. Nat Commun 11:366. https://doi.org/10.1038/s41467-019-13820-z

  57. Brongersma ML, Halas NJ, Nordlander P (2015) Nat Nanotechnol 10(1):25. https://www.nature.com/articles/nnano.2014.311, https://doi.org/10.1038/nnano.2014.311

  58. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Nano Lett 13(1):240. https://doi.org/10.1021/nl303940z

    Article  ADS  Google Scholar 

  59. Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter EA, Nordlander P et al (2018) Science 362(6410):69. http://science.sciencemag.org/content/362/6410/69, https://doi.org/10.1126/science.aat696

  60. Baumberg JJ (2019) Faraday Discuss 214:501. https://doi.org/10.1039/C9FD00027E

    Article  ADS  Google Scholar 

  61. Seemala B, Therrien AJ, Lou M, Li K, Finzel JP, Qi J, Nordlander P, Christopher P (2019) ACS Energy Lett 4:1803. https://doi.org/10.1021/acsenergylett.9b00990

    Article  Google Scholar 

  62. Scholl JA, Koh AL, Dionne JA (2012) Nature 483(7390):421. https://www.nature.com/articles/nature10904, https://doi.org/10.1038/nature10904

  63. Kern J, Großmann S, Tarakina NV, Häckel T, Emmerling M, Kamp M, Huang JS, Biagioni P, Prangsma JC, Hecht B (2012) Nano Lett 12(11):5504. https://doi.org/10.1021/nl302315g

    Article  ADS  Google Scholar 

  64. Chen X, Park HR, Pelton M, Piao X, Lindquist NC, Im H, Kim YJ, Ahn JS, Ahn KJ, Park N, Kim DS, Oh SH (2013) Nat Commun 4:2361. https://doi.org/10.1038/ncomms3361

    Article  ADS  Google Scholar 

  65. Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen NA, Stenger N (2015) Nat Commun 6:8788. https://www.nature.com/articles/ncomms9788, https://doi.org/10.1038/ncomms9788

  66. Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociakand M, Hillenkamp M (2018) Nat Phys https://doi.org/10.1038/s41567-018-0345-z

  67. Yang Y, Di Z, Yan W, Agarwal A, Zheng M, Joannopoulos JD, Lalanne P, Christensen T, Berggren KK, Soljačić M (2019) A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576(7786):248–252. https://doi.org/10.1038/s41586-019-1803-1

  68. Albert Polman MK, García de Abajo FJ (2019) Nat Mater. https://doi.org/10.1038/s41563-019-0409-1

  69. Varas A, García-González P, Feist J, García-Vidal FJ, Rubio A (2016) Nanophotonics 5(3):409. https://doi.org/10.1515/nanoph-2015-0141

    Article  Google Scholar 

  70. Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ (2014) Phys Rev B 90:161407. https://doi.org/10.1103/PhysRevB.90.161407

  71. Liebsch A (1997) Electronic excitations at metal surfaces. Springer, New York

    Book  Google Scholar 

  72. Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P, Lezec HJ, Aizpurua J, Crozier KB (2016) Nat Commun 7:11495. https://doi.org/10.1038/ncomms11495

  73. Christensen T, Yan W, Jauho AP, Soljačić M, Mortensen NA (2017) Phys Rev Lett 118:157402. https://doi.org/10.1103/PhysRevLett.118.157402

  74. Boardman AD (1982) Electromagnetic surface modes. Wiley

    Google Scholar 

  75. Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA (2015) J Phys Condens Matter 27(18):183204. https://iopscience.iop.org/article/10.1088/0953-8984/27/18/183204/meta, https://doi.org/10.1088/0953-8984/27/18/183204

  76. Ruppin R (1973) Phys Rev Lett 31:1434. https://doi.org/10.1103/PhysRevLett.31.1434

  77. Boardman AD, Paranjape BV (1977) J Phys F Met Phys 7(9):1935. https://iopscience.iop.org/article/10.1088/0305-4608/7/9/036, https://doi.org/10.1088/0305-4608/7/9/036

  78. Christensen T, Yan W, Raza S, Jauho AP, Mortensen NA, Wubs M (2014) ACS Nano 8(2):1745. https://doi.org/10.1021/nn406153k

    Article  Google Scholar 

  79. Ginzburg P, Zayats AV (2013) ACS Nano 7(5):4334. https://doi.org/10.1021/nn400842m

    Article  Google Scholar 

  80. Mortensen NA (2013) Photon Nanostruct Fundam Appl 11(4):303. http://www.sciencedirect.com/science/article/pii/S1569441013000370, https://doi.org/10.1016/j.photonics.2013.06.002

  81. Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI (2014) Nat Commun 5:3809. https://doi.org/10.1038/ncomms4809

    Article  ADS  Google Scholar 

  82. Feibelman PJ (1982) Prog Surf Sci 12(4):287. https://doi.org/10.1016/0079-6816(82)90001-6

    Article  ADS  Google Scholar 

  83. Liebsch A (1993) Phys Rev B 48:11317. https://doi.org/10.1103/PhysRevB.48.11317

    Article  ADS  Google Scholar 

  84. Teperik TV, Nordlander P, Aizpurua J, Borisov AG (2013) Phys Rev Lett 110:263901. https://doi.org/10.1103/PhysRevLett.110.263901

    Article  ADS  Google Scholar 

  85. Yan W, Wubs M, Asger Mortensen N (2015) Phys Rev Lett 115:137403. https://doi.org/10.1103/PhysRevLett.115.137403

  86. Jin D, Hu Q, Neuhauser D, von Cube F, Yang Y, Sachan R, Luk TS, Bell DC, Fang NX (2015) Phys Rev Lett 115:193901. https://doi.org/10.1103/PhysRevLett.115.193901

  87. Bozhevolnyi SI, Martin-Moreno L, García-Vidal F (2017) Quantum plasmonics. Springer

    Google Scholar 

  88. Tame MS, McEnery KR, Özdemir K, Lee J, Maier SA, Kim MS (2013) Nat Phys 9:329–340. https://doi.org/10.1038/nphys2615

    Article  Google Scholar 

  89. Bozhevolnyi SI, Mortensen NA (2017) Nanophotonics 6:1185. https://doi.org/10.1515/nanoph-2016-0179

    Article  Google Scholar 

  90. Grigorenko AN, Polini M, Novoselov KS (2012) Nat Photon 6:749 https://doi.org/nphoton.2012.262

  91. Low T, Avouris P (2014) ACS Nano 8(2):1086. https://doi.org/10.1021/nn406627u

    Article  Google Scholar 

  92. García de Abajo FJ (2014) ACS Photon 1(3):135. https://doi.org/10.1021/ph400147y

    Article  Google Scholar 

  93. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666. https://science.sciencemag.org/content/306/5696/666, https://doi.org/10.1126/science.1102896

  94. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197. https://www.nature.com/articles/nature04233, https://doi.org/10.1038/nature04233

  95. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Nature 438:201. https://www.nature.com/articles/nature04235, https://doi.org/10.1038/nature04235

  96. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102(30):10451. https://www.pnas.org/content/102/30/10451, https://doi.org/10.1073/pnas.0502848102

  97. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109. https://doi.org/10.1103/RevModPhys.81.109

  98. Katsnelson MI (2012) Graphene: carbon in two dimensions. Cambridge University Press. https://doi.org/10.1017/CBO9781139031080

  99. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321(5887):385. https://science.sciencemag.org/content/321/5887/385, https://doi.org/10.1126/science.1157996

  100. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8(3):902. https://doi.org/10.1021/nl0731872

    Article  ADS  Google Scholar 

  101. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nat Photon 4:611. https://doi.org/10.1038/nphoton.2010.186

    Article  ADS  Google Scholar 

  102. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320(5881):1308. https://science.sciencemag.org/content/320/5881/1308, https://doi.org/10.1126/science.1156965

  103. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Nature 487:82. https://doi.org/10.1038/nature11253

    Article  ADS  Google Scholar 

  104. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Nature 487:77. https://doi.org/10.1038/nature11254

    Article  ADS  Google Scholar 

  105. Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Nat Mater 14:421. https://www.nature.com/articles/nmat4169, https://doi.org/10.1038/nmat4169

  106. Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187. http://science.sciencemag.org/content/357/6347/187, https://doi.org/10.1126/science.aan2735

  107. Alcaraz Iranzo D, Nanot S, Dias EJC, Epstein I, Peng C, Efetov DK, Lundeberg MB, Parret R, Osmond J, Hong JY, Kong J, Englund DR, Peres NMR, Koppens FHL (2018) Science 360(6386):291. https://science.sciencemag.org/content/360/6386/291, https://doi.org/10.1126/science.aar8438

  108. Ni GX, McLeod AS, Sun Z, Wang L, Xiong L, Post KW, Sunku SS, Jiang BY, Hone J, Dean CR, Fogler MM, Basov DN (2018) Nature 557:530. https://doi.org/10.1038/s41586-018-0136-9

    Article  ADS  Google Scholar 

  109. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Nat Nanotechnol 6:630. https://www.nature.com/articles/nnano.2011.146, https://doi.org/10.1038/nnano.2011.146

  110. Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Science 349(6244):165. https://science.sciencemag.org/content/349/6244/165, https://doi.org/10.1126/science.aab2051

  111. Liu H, Liu Y, Zhu D (2011) J Mater Chem 21:3335. https://doi.org/10.1039/C0JM02922J

    Article  Google Scholar 

  112. Boltasseva A, Shalaev VM (2019) ACS Photon 6(1):1. https://doi.org/10.1021/acsphotonics.8b01570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo André Dias Gonçalves .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, P.A.D. (2020). Introduction. In: Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38291-9_1

Download citation

Publish with us

Policies and ethics