Skip to main content

The Ubiquitin System in Alzheimer’s Disease

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

Alzheimer’s disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin–Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer’s disease

DLB:

Dementia with Lewy Bodies

DUB:

Deubiquitinase

E1:

E1-activating enzyme

E2:

E2 conjugating enzyme

E3:

E3 ubiquitin ligase

E-NFTs:

Extracellular neurofibrillary tangles

FTD:

Frontotemporal dementia

FTD-U:

Frontotemporal dementia with ubiquitin pathology

HD:

Huntington’s disease

HECT:

Homologous to E6AP carboxyl terminus

LTP:

Long-term potentiation

MAM:

Mitochondria-associated membranes

MLKL:

Mixed lineage kinase domain-like

mTOR:

Mammalian target of rapamycin

NEDD4:

Neuronal precursor cell-expressed developmentally downregulated 4

NFTs:

Neurofibrillary tangles

PHFs:

Paired-helical filaments

PM:

Plasma membrane

PROTACs:

Proteolysis targeting chimeric molecules

PSD:

Postsynaptic densities

PTM:

Post-translational modification

RBR:

RING-between-RING

RING:

Really-Interesting new gene

RIPK:

Receptor-interacting serine/threonine protein kinase

SCF:

Skp, Cullin, F-box containing E3 ligase complex

USP:

Ubiquitin-specific protease

References

  1. Alzheimer’s-Association (2014) 2014 Alzheimer’s disease facts and figures. Alzheimers Dement 10:e47-92

    Google Scholar 

  2. Xie J, Brayne C, Matthews FE, Medical Research Council Cognitive Function and Ageing Study collaborators (2008) Survival times in people with dementia: analysis from population based cohort study with 14 year follow-up. BMJ 336:258–262

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kertesz A, Kawarai T, Rogaeva E, St George-Hyslop P, Poorkaj P, Bird TD, Munoz DG (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54:818–827

    Article  CAS  PubMed  Google Scholar 

  4. Rosso SM, Kamphorst W, de Graaf B, Willemsen R, Ravid R, Niermeijer MF, Spillantini MG, Heutink P, van Swieten JC (2001) Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21-22. Brain 124:1948–1957

    Article  CAS  PubMed  Google Scholar 

  5. Holmes C, Cairns N, Lantos P, Mann A (1999) Validity of current clinical criteria for Alzheimer’s disease, vascular dementia and dementia with Lewy bodies. Br J Psychiatry 174:45–50

    Article  CAS  PubMed  Google Scholar 

  6. Spillantini MG, Goedert M (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci 920:16–27

    Article  CAS  PubMed  Google Scholar 

  7. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707

    Article  PubMed  Google Scholar 

  9. Goate A, Chartierharlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericakvance M, Roses A, Williamson R, Rossor M, Owen M et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with Famial Alzheimer’s-disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  10. Sherrington R, Rogaev EI, Liang YA, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754

    Article  CAS  PubMed  Google Scholar 

  11. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R (2018) The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol 17:721–730

    Article  CAS  PubMed  Google Scholar 

  12. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  13. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U, Kong A, Helisalmi S, Soininen H, Lah JJ, DemGene AD, Fladby T, Ulstein ID, Djurovic S, Sando SB et al (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet 47:445–447

    Article  CAS  PubMed  Google Scholar 

  15. Escott-Price V, Bellenguez C, Wang L-S, Choi S-H, Harold D, Jones L, Holmans P, Gerrish A, Vedernikov A, Richards A, DeStefano AL, Lambert J-C, Ibrahim-Verbaas CA, Naj AC, Sims R, Jun G, Bis JC, Beecham GW, Grenier-Boley B, Russo G et al (2014) Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PLoS One e94661:9

    Google Scholar 

  16. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, Jeng AT, Cooper B, Skorupa T, Carrell D, Levitch D, Hsu S, Choi J, Ryten M, Sassi C, Bras J et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505:550–554

    Article  CAS  PubMed  Google Scholar 

  17. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hägg S, Athanasiu L, Voyle N, Proitsi P, Witoelar A, Stringer S, Aarsland D, Almdahl IS, Andersen F, Bergh S, Bettella F, Bjornsson S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, van der Lee SJ, Amlie-Wolf A, Bellenguez C, Frizatti A, Chouraki V, Martin ER, Sleegers K, Badarinarayan N, Jakobsdottir J, Hamilton-Nelson KL, Moreno-Grau S, Olaso R et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JBJ, Dobson-Stone C, Brooks WS, Schofield PR, Halliday GM, Hodges JR, Piguet O, Bartley L, Thompson E, Haan E, Hernández I, Ruiz A, Boada M, Borroni B, Padovani A et al (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686–699

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guerreiro R, Ross OA, Kun-Rodrigues C, Hernandez DG, Orme T, Eicher JD, Shepherd CE, Parkkinen L, Darwent L, Heckman MG, Scholz SW, Troncoso JC, Pletnikova O, Ansorge O, Clarimon J, Lleo A, Morenas-Rodriguez E, Clark L, Honig LS, Marder K et al (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64–74

    Article  PubMed  Google Scholar 

  21. Ferrari R, Wang Y, Vandrovcova J, Guelfi S, Witeolar A, Karch CM, Schork AJ, Fan CC, Brewer JB, International FTD-Genomics Consortium (IFGC), International Parkinson’s Disease Genomics Consortium (IPDGC), International Genomics of Alzheimer’s Project (IGAP), Momeni P, Schellenberg GD, Dillon WP, Sugrue LP, Hess CP, Yokoyama JS, Bonham LW, Rabinovici GD et al (2017) Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry 88:152–164

    Article  PubMed  Google Scholar 

  22. Guerreiro R, Escott-Price V, Darwent L, Parkkinen L, Ansorge O, Hernandez DG, Nalls MA, Clark L, Honig L, Marder K, van der Flier W, Holstege H, Louwersheimer E, Lemstra A, Scheltens P, Rogaeva E, St George-Hyslop P, Londos E, Zetterberg H, Ortega-Cubero S et al (2016) Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson’s and Alzheimer’s diseases. Neurobiol Aging 38:214.e7–214.e10

    Article  CAS  Google Scholar 

  23. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342:697–699

    Article  CAS  PubMed  Google Scholar 

  24. Raber J, Huang YD, Ashford JW (2004) ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging 25:641–650

    Article  CAS  PubMed  Google Scholar 

  25. Lane-Donovan C, Herz J (2017) ApoE, ApoE receptors, and the synapse in Alzheimer’s disease. Trends Endocrinol Metab 28:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9:63–75.e2

    Article  PubMed  Google Scholar 

  27. Cummings J (2018) Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci 11:147–152

    Article  PubMed  Google Scholar 

  28. Prince M, Ali G-C, Guerchet M, Prina AM, Albanese E, Wu Y-T (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, Chan KY, Joanette Y, Prince M, Rossor M, Saxena S, Snyder HM, Sperling R, Varghese M, Wang H, Wortmann M, Dua T (2016) Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol 15:1285–1294

    Article  PubMed  Google Scholar 

  30. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  31. van der Kant R, Goldstein LSB (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502–515

    Article  PubMed  CAS  Google Scholar 

  32. Seabrook GR, Smith DW, Bowery BJ, Easter A, Reynolds T, Fitzjohn SM, Morton RA, Zheng H, Dawson GR, Sirinathsinghji DJ, Davies CH, Collingridge GL, Hill RG (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38:349–359

    Article  CAS  PubMed  Google Scholar 

  33. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  CAS  PubMed  Google Scholar 

  34. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Figura Von K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  CAS  Google Scholar 

  35. Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller L, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC et al (1999) beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  37. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248:1122–1124

    Article  CAS  PubMed  Google Scholar 

  38. Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993) beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268:3021–3024

    CAS  PubMed  Google Scholar 

  39. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–186

    Article  CAS  PubMed  Google Scholar 

  40. Choy RW-Y, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci USA 109:E2077–E2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cirrito JR, Kang J-E, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Obregon D, Hou H, Deng J, Giunta B, Tian J, Darlington D, Shahaduzzaman M, Zhu Y, Mori T, Mattson MP, Tan J (2012) Soluble amyloid precursor protein-α modulates β-secretase activity and amyloid-β generation. Nat Commun 3:777

    Article  PubMed  CAS  Google Scholar 

  43. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  44. Shokri-Kojori E, Wang G-J, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 115:4483–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  46. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  48. Himmler A, Drechsel D, Kirschner MW, Martin DW (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114

    Article  PubMed  PubMed Central  Google Scholar 

  50. Espíndola SL, Damianich A, Alvarez RJ, Sartor M, Belforte JE, Ferrario JE, Gallo J-M, Avale ME (2018) Modulation of tau isoforms imbalance precludes tau pathology and cognitive decline in a mouse model of tauopathy. Cell Rep 23:709–715

    Article  PubMed  CAS  Google Scholar 

  51. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau-protein - correlation with the tau-pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44:5862–5872

    Article  CAS  PubMed  Google Scholar 

  53. Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, Ward S, Reyes JF, Philibert K, Glucksman MJ (2011) Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. J Biol Chem 286:23063–23076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424

    Article  CAS  PubMed  Google Scholar 

  55. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowan CM, Bossing T, Page A, Shepherd D, Mudher A (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120:593–604

    Article  CAS  PubMed  Google Scholar 

  57. Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung K-Y, Ward MA, Anderton BH, Hanger DP (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 22:3186–3195

    Article  CAS  PubMed  Google Scholar 

  58. Yamada K, Patel TK, Hochgrafe K, Mahan TE, Jiang H, Stewart FR, Mandelkow EM, Holtzman DM (2015) Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener 10:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  60. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  CAS  PubMed  Google Scholar 

  61. Rothman S (2010) How is the balance between protein synthesis and degradation achieved? Theor Biol Med Model 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3:a004440–a004440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ji X-R, Cheng K-C, Chen Y-R, Lin T-Y, Cheung CHA, Wu C-L, Chiang H-C (2018) Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies. FASEB J 32:1375–1387

    Article  CAS  PubMed  Google Scholar 

  64. Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y (1988) Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 75:345–353

    Article  CAS  PubMed  Google Scholar 

  65. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235:1641–1644

    Article  CAS  PubMed  Google Scholar 

  66. Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer-disease brains. Proc Natl Acad Sci USA 84:3033–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi H, Medway C, Bullock J, Brown K, Kalsheker N, Morgan K (2010) Analysis of Genome-Wide Association Study (GWAS) data looking for replicating signals in Alzheimer’s disease (AD). Int J Mol Epidemiol Genet 1:53–66

    CAS  PubMed  Google Scholar 

  68. Hu X, Pickering EH, Hall SK, Naik S, Liu YC, Soares H, Katz E, Paciga SA, Liu W, Aisen PS, Bales KR, Samad TA, John SL (2011) Genome-wide association study identifies multiple novel loci associated with disease progression in subjects with mild cognitive impairment. Transl Psychiatry 1:e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nemes Z, Devreese B, Steinert PM, Van Beeumen J, Fésüs L (2004) Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. FASEB J 18:1135–1137

    Article  CAS  PubMed  Google Scholar 

  70. Ye X, Sun X, Starovoytov V, Cai Q (2015) Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 24:2938–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuczera T, Stilling RM, Hsia H-E, Bahari-Javan S, Irniger S, Nasmyth K, Sananbenesi F, Fischer A (2011) The anaphase promoting complex is required for memory function in mice. Learn Mem 18:49–57

    Article  CAS  PubMed  Google Scholar 

  73. Aulia S, Tang BL (2006) Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer’s disease pathology. Biochem Biophys Res Commun 339:1–6

    Article  CAS  PubMed  Google Scholar 

  74. Suberbielle E, Djukic B, Evans M, Kim DH, Taneja P, Wang X, Finucane M, Knox J, Ho K, Devidze N, Masliah E, Mucke L (2015) DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Commun 6:8897

    Article  CAS  PubMed  Google Scholar 

  75. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    Article  CAS  PubMed  Google Scholar 

  76. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  CAS  PubMed  Google Scholar 

  77. Del Prete D, Rice RC, Rajadhyaksha AM, D’Adamio L (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem 291:17209–17227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. von RC R, Kins S, Hipfel R, Kammer von der H, Nitsch RM (2005) The novel cytosolic RING finger protein dactylidin is up-regulated in brains of patients with Alzheimer’s disease. Eur J Neurosci 21:1289–1298

    Article  Google Scholar 

  79. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  80. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin J-J, van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  81. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, Crook R, Melquist S, Kuntz K, Petersen R, Josephs K, Pickering-Brown SM, Graff-Radford N, Uitti R, Dickson D, Wszolek Z, Gonzalez J, Beach TG, Bigio E, Johnson N et al (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15:2988–3001

    Article  CAS  PubMed  Google Scholar 

  82. Galimberti D, Fenoglio C, Cortini F, Serpente M, Venturelli E, Villa C, Clerici F, Marcone A, Benussi L, Ghidoni R, Gallone S, Scalabrini D, Restelli I, Martinelli Boneschi F, Cappa S, Binetti G, Mariani C, Rainero I, Giordana MT, Bresolin N et al (2010) GRN variability contributes to sporadic frontotemporal lobar degeneration. J Alzheimers Dis 19:171–177

    Article  PubMed  CAS  Google Scholar 

  83. Hou H-L, Shen Y-X, Zhu H-Y, Sun H, Yan X-B, Fang H, Zhou J-N (2006) Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimer’s disease. J Neurosci Res 84:1862–1870

    Article  CAS  PubMed  Google Scholar 

  84. Abisambra JF, Jinwal UK, Blair LJ, O’Leary JC, Li Q, Brady S, Wang L, Guidi CE, Zhang B, Nordhues BA, Cockman M, Suntharalingham A, Li P, Jin Y, Atkins CA, Dickey CA (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J. Neurosci 33:9498–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaneko M, Koike H, Saito R, Kitamura Y, Okuma Y, Nomura Y (2010) Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci 30:3924–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maeda T, Marutani T, Zou K, Araki W, Tanabe C, Yagishita N, Yamano Y, Amano T, Michikawa M, Nakajima T, Komano H (2009) An E3 ubiquitin ligase, Synoviolin, is involved in the degradation of immature nicastrin, and regulates the production of amyloid beta-protein. FEBS J 276:5832–5840

    Article  CAS  PubMed  Google Scholar 

  87. Tanabe C, Maeda T, Zou K, Liu J, Liu S, Nakajima T, Komano H (2012) The ubiquitin ligase synoviolin up-regulates amyloid β production by targeting a negative regulator of γ-secretase, Rer1, for degradation. J Biol Chem 287:44203–44211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flach K, Ramminger E, Hilbrich I, Arsalan-Werner A, Albrecht F, Herrmann L, Goedert M, Arendt T, Holzer M (2014) Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochim Biophys Acta 1842:1527–1538

    Article  CAS  PubMed  Google Scholar 

  89. Benvegnù S, Wahle T, Dotti CG (2017) E3 ligase mahogunin (MGRN1) influences amyloid precursor protein maturation and secretion. Oncotarget 8:89439–89450

    Article  PubMed  PubMed Central  Google Scholar 

  90. Choi J, Gao J, Kim J, Hong C, Kim J, Tontonoz P (2015) The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Sci Transl Med 7:314ra184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Geetha T, Zheng C, McGregor WC, Douglas White B, Diaz-Meco M-T, Moscat J, Babu JR (2012) TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 61:1289–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wakatsuki S, Saitoh F, Araki T (2011) ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13:1415–1423

    Article  CAS  PubMed  Google Scholar 

  93. Atkin G, Hunt J, Minakawa E, Sharkey L, Tipper N, Tennant W, Paulson HL (2014) F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing. J Biol Chem 289:7038–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams KL, Topp S, Yang S, Smith B, Fifita JA, Warraich ST, Zhang KY, Farrawell N, Vance C, Hu X, Chesi A, Leblond CS, Lee A, Rayner SL, Sundaramoorthy V, Dobson-Stone C, Molloy MP, van Blitterswijk M, Dickson DW, Petersen RC et al (2016) CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun 7:11253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee S, Wang J-W, Yu W, Lu B (2012) Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat Commun 3:1312

    Article  PubMed  CAS  Google Scholar 

  96. Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, Nawa M, Terashita K, Aiso S, Nishimoto I (2003) A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 17:1150–1158

    Article  PubMed  Google Scholar 

  97. McEwan WA, Falcon B, Vaysburd M, Clift D, Oblak AL, Ghetti B, Goedert M, James LC (2017) Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci USA 114:574–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rousseaux MW, de Haro M, Lasagna-Reeves CA, De Maio A, Park J, Jafar-Nejad P, Al-Ramahi I, Sharma A, See L, Lu N, Vilanova-Velez L, Klisch TJ, Westbrook TF, Troncoso JC, Botas J, Zoghbi HY (2016) TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. Elife 5:18748

    Article  Google Scholar 

  99. Rousseaux MW, Revelli J-P, Vázquez-Vélez GE, Kim J-Y, Craigen E, Gonzales K, Beckinghausen J, Zoghbi HY (2018) Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. Elife 7:93

    Article  Google Scholar 

  100. Yokota T, Mishra M, Akatsu H, Tani Y, Miyauchi T, Yamamoto T, Kosaka K, Nagai Y, Sawada T, Heese K (2006) Brain site-specific gene expression analysis in Alzheimer’s disease patients. Eur J Clin Invest 36:820–830

    Article  CAS  PubMed  Google Scholar 

  101. Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F, Man H-Y (2011) Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 119:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hou Q, Gilbert J, Man H-Y (2011) Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 72:806–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Y, Guo O, Huo Y, Wang G, Man H-Y (2018) Amyloid-β induces AMPA receptor ubiquitination and degradation in primary neurons and human brains of Alzheimer’s disease. J Alzheimers Dis 62:1789–1801

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rodrigues EM, Scudder SL, Goo MS, Patrick GN (2016) Aβ-induced synaptic alterations require the E3 ubiquitin ligase Nedd4-1. J Neurosci 36:1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schwarz LA, Hall BJ, Patrick GN (2010) Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J Neurosci 30:16718–16729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tian J, Zheng W, Li X-L, Cui Y-H, Wang Z-Y (2018) Lower expression of Ndfip1 is associated with Alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx. Front Aging Neurosci 10:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ho Kim J, Franck J, Kang T, Heinsen H, Ravid R, Ferrer I, Hee Cheon M, Lee J-Y, Shin Yoo J, Steinbusch HW, Salzet M, Fournier I, Mok Park Y (2015) Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci Rep 5:11138

    Article  PubMed  PubMed Central  Google Scholar 

  108. Singh BK, Vatsa N, Kumar V, Shekhar S, Sharma A, Jana NR (2017) Ube3a deficiency inhibits amyloid plaque formation in APPswe/PS1δE9 mouse model of Alzheimer’s disease. Hum Mol Genet 26:4042–4054

    Article  CAS  PubMed  Google Scholar 

  109. Wang P, Joberty G, Buist A, Vanoosthuyse A, Stancu I-C, Vasconcelos B, Pierrot N, Faelth-Savitski M, Kienlen-Campard P, Octave J-N, Bantscheff M, Drewes G, Moechars D, Dewachter I (2017) Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol 133:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huo Y, Khatri N, Hou Q, Gilbert J, Wang G, Man H-Y (2015) The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J Neurochem 134:1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boselli M, Lee B-H, Robert J, Prado MA, Min S-W, Cheng C, Silva MC, Seong C, Elsasser S, Hatle KM, Gahman TC, Gygi SP, Haggarty SJ, Gan L, King RW, Finley D (2017) An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem 292:19209–19225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yeates EFA, Tesco G (2016) The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem 291:15753–15766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Alexopoulou Z, Lang J, Perrett RM, Elschami M, Hurry MED, Kim HT, Mazaraki D, Szabo A, Kessler BM, Goldberg AL, Ansorge O, Fulga TA, Tofaris GK (2016) Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci USA 113:E4688–E4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ohrfelt A, Johansson P, Wallin A, Andreasson U, Zetterberg H, Blennow K, Svensson J (2016) Increased cerebrospinal fluid levels of ubiquitin carboxyl-terminal hydrolase L1 in patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 6:283–294

    Article  PubMed  PubMed Central  Google Scholar 

  115. Barrachina M, Castaño E, Dalfó E, Maes T, Buesa C, Ferrer I (2006) Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiol Dis 22:265–273

    Article  CAS  PubMed  Google Scholar 

  116. Xue S, Jia J (2006) Genetic association between ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism and sporadic Alzheimer’s disease in a Chinese Han population. Brain Res 1087:28–32

    Article  CAS  PubMed  Google Scholar 

  117. Forero DA, Benítez B, Arboleda G, Yunis JJ, Pardo R, Arboleda H (2006) Analysis of functional polymorphisms in three synaptic plasticity-related genes (BDNF, COMT AND UCHL1) in Alzheimer’s disease in Colombia. Neurosci Res 55:334–341

    Article  CAS  PubMed  Google Scholar 

  118. Shibata N, Motoi Y, Tomiyama H, Ohnuma T, Kuerban B, Tomson K, Komatsu M, Hattori N, Arai H (2012) Lack of genetic association of the UCHL1 gene with Alzheimer’s disease and Parkinson’s disease with dementia. Dement Geriatr Cogn Disord 33:250–254

    Article  CAS  PubMed  Google Scholar 

  119. Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, Moolman D, Zhang H, Shelanski M, Arancio O (2006) Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126:775–788

    Article  CAS  PubMed  Google Scholar 

  120. Zhang M, Cai F, Zhang S, Zhang S, Song W (2014) Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci Rep 4:7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW (2013) β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 288:16937–16948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie M, Han Y, Yu Q, Wang X, Wang S, Liao X (2016) UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J Alzheimers Dis 49:353–363

    Article  CAS  PubMed  Google Scholar 

  123. Kikuchi M, Ogishima S, Miyamoto T, Miyashita A, Kuwano R, Nakaya J, Tanaka H (2013) Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer’s disease. PLoS One 8:e76162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tramutola A, Triani F, Di Domenico F, Barone E, Cai J, Klein JB, Perluigi M, Butterfield DA (2018) Poly-ubiquitin profile in Alzheimer disease brain. Neurobiol Dis 118:129–141

    Article  CAS  PubMed  Google Scholar 

  125. Manavalan A, Mishra M, Feng L, Sze SK, Akatsu H, Heese K (2013) Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45:e39–e39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Varshavsky A (2001) Ubiquitin. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York, pp 2091–2093

    Chapter  Google Scholar 

  127. Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou GY, Chen SX, Wells L, Maupin-Furlow JA (2010) Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:U54–U60

    Article  CAS  Google Scholar 

  128. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  130. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953

    Article  CAS  PubMed  Google Scholar 

  131. Clague MJ, Liu H, Urbé S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23:457–467

    Article  CAS  PubMed  Google Scholar 

  132. Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27:491–504

    Article  CAS  PubMed  Google Scholar 

  133. Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17:379–394

    Article  CAS  PubMed  Google Scholar 

  134. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  135. Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16:30–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hermann M, Bogunovic D (2017) ISG15: in sickness and in health. Trends Immunol 38:79–93

    Article  CAS  PubMed  Google Scholar 

  137. Vijaykumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  CAS  Google Scholar 

  138. Sloper-Mould KE, Jemc JC, Pickart CM, Hicke L (2001) Distinct functional surface regions on ubiquitin. J Biol Chem 276:30483–30489

    Article  CAS  PubMed  Google Scholar 

  139. Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, Stringer D, Piper RC, Schulman BA (2009) Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol Cell 36:1095–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng XD, Wilkinson KD (2006) The ubiquitin binding domain ZnFUBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197–1208

    Article  CAS  PubMed  Google Scholar 

  141. Hospenthal MK, Freund SMV, Komander D (2013) Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 20:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hu M, Li PW, Li MY, Li WY, Yao TT, Wu JW, Gu W, Cohen RE, Shi YG (2002) Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111:1041–1054

    Article  CAS  PubMed  Google Scholar 

  143. Hershko A, Heller H (1985) Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem Biophys Res Commun 128:1079–1086

    Article  CAS  PubMed  Google Scholar 

  144. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  145. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  CAS  PubMed  Google Scholar 

  146. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586

    Article  CAS  PubMed  Google Scholar 

  147. Ciehanover A, Hod Y, Hershko A (1978) A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 81:1100–1105

    Article  CAS  PubMed  Google Scholar 

  148. Hershko A, Ciechanover A, Rose IA (1981) Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem 256:1525–1528

    CAS  PubMed  Google Scholar 

  149. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown - conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77:1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hershko A, Ciechanover A, Rose IA (1979) Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci USA 76:3107–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lorick KL, Jensen JP, Fang SY, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    Article  CAS  PubMed  Google Scholar 

  153. Ozkan E, Yu HT, Deisenhofer J (2005) Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc Natl Acad Sci USA 102:18890–18895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3:e1487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Christensen DE, Brzovic PS, Klevit RE (2007) E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 14:941–948

    Article  CAS  PubMed  Google Scholar 

  156. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huang L, Kinnucan E, Wang GL, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326

    Article  CAS  PubMed  Google Scholar 

  158. Kim HC, Huibregtse JM (2009) Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 29:3307–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–U136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  161. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  163. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539

    Article  CAS  PubMed  Google Scholar 

  164. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  CAS  PubMed  Google Scholar 

  165. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    CAS  PubMed  Google Scholar 

  166. Clague MJ, Urbé S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 81:203

    Google Scholar 

  167. Licchesi JDF, Mieszczanek J, Mevissen TET, Rutherford TJ, Akutsu M, Virdee S, Oualid El F, Chin JW, Ovaa H, Bienz M, Komander D (2012) An ankyrin-repeat ubiquitin-binding domain determines TRABID’s specificity for atypical ubiquitin chains. Nat Struct Mol Biol 19:62–71

    Article  CAS  Google Scholar 

  168. Lee MJ, Lee B-H, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10:R110.003871

    Article  PubMed  CAS  Google Scholar 

  169. Stone M, Hartmann-Petersen R, Seeger M, Bech-Otschir D, Wallace M, Gordon C (2004) Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J Mol Biol 344:697–706

    Article  CAS  PubMed  Google Scholar 

  170. Verma R, Aravind L, Oania R, McDonald WH, JR Y, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  171. Südhof TC (2018) Towards an understanding of synapse formation. Neuron 100:276–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Kelleher RJ, Govindarajan A, Jung H-Y, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  CAS  PubMed  Google Scholar 

  173. Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4:a011353–a011353

    Article  PubMed  PubMed Central  Google Scholar 

  174. Akama KT, Albanese C, Pestell RG, Van Eldik LJ (1998) Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci USA 95:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Freir DB, Nicoll AJ, Klyubin I, Panico S, Mc Donald JM, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J (2011) Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336

    Article  PubMed  CAS  Google Scholar 

  176. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Sheng M, Sabatini BL, Südhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4:a005777–a005777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Wang Y, Qin Z-H (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402

    Article  CAS  PubMed  Google Scholar 

  179. Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA, Lombroso PJ (2009) Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 29:9330–9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Scudder SL, Goo MS, Cartier AE, Molteni A, Schwarz LA, Wright R, Patrick GN (2014) Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8. J Neurosci 34:16637–16649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Wang J, Peng Q, Lin Q, Childress C, Carey D, Yang W (2010) Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J Biol Chem 285:12279–12288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231–242

    Article  CAS  PubMed  Google Scholar 

  183. Ma Q, Ruan H, Peng L, Zhang M, Gack MU, Yao W-D (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci USA 114:E8760–E8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, Scott JD (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40:595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dosemeci A, Thein S, Yang Y, Reese TS, Tao-Cheng J-H (2013) CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner. Biochem Biophys Res Commun 430:245–249

    Article  CAS  PubMed  Google Scholar 

  186. Jurd R, Thornton C, Wang J, Luong K, Phamluong K, Kharazia V, Gibb SL, Ron D (2008) Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner. J Biol Chem 283:301–310

    Article  CAS  PubMed  Google Scholar 

  187. Bingol B, Wang C-F, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578

    Article  CAS  PubMed  Google Scholar 

  188. Goo MS, Scudder SL, Patrick GN (2015) Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors. Front Mol Neurosci 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Cole GM, Timiras PS (1987) Ubiquitin-protein conjugates in Alzheimer’s lesions. Neurosci Lett 79:207–212

    Article  CAS  PubMed  Google Scholar 

  190. Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155:9–15

    Article  CAS  PubMed  Google Scholar 

  191. Manetto V, Abdul-Karim FW, Perry G, Tabaton M, Autilio-Gambetti L, Gambetti P (1989) Selective presence of ubiquitin in intracellular inclusions. Am J Pathol 134:505–513

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Tabaton M, Cammarata S, Mancardi G, Manetto V, Autilio-Gambetti L, Perry G, Gambetti P (1991) Ultrastructural localization of beta-amyloid, tau, and ubiquitin epitopes in extracellular neurofibrillary tangles. Proc Natl Acad Sci USA 88:2098–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fergusson J, Landon M, Lowe J, Dawson SP, Layfield R, Hanger DP, Mayer RJ (1996) Pathological lesions of Alzheimer’s disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome. Neurosci Lett 219:167–170

    Article  CAS  PubMed  Google Scholar 

  194. Mund T, Masuda-Suzukake M, Goedert M, Pelham HR (2018) Ubiquitination of alpha-synuclein filaments by Nedd4 ligases. PLoS One 13:e0200763

    Article  PubMed  PubMed Central  Google Scholar 

  195. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  CAS  PubMed  Google Scholar 

  196. Esparza TJ, Gangolli M, Cairns NJ, Brody DL (2018) Soluble amyloid-beta buffering by plaques in Alzheimer disease dementia versus high-pathology controls. PLoS One 13:e0200251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schröder GF (2017) Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 358:116–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goedert M, Falcon B, Zhang W, Ghetti B, Scheres SHW (2019) Distinct conformers of assembled tau in Alzheimer’s and Pick’s Diseases. Cold Spring Harb Symp Quant Biol 83:163–171

    Article  Google Scholar 

  200. Zucchelli S, Codrich M, Marcuzzi F, Pinto M, Vilotti S, Biagioli M, Ferrer I, Gustincich S (2010) TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains. Hum Mol Genet 19:3759–3770

    Article  CAS  PubMed  Google Scholar 

  201. Nakayama Y, Sakamoto S, Tsuji K, Ayaki T, Tokunaga F, Ito H (2019) Identification of linear polyubiquitin chain immunoreactivity in tau pathology of Alzheimer’s disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2019.03.017

  202. Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI, Rush J, Peng J (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 286:10457–10465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci 13:3850–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hegde AN, Goldberg AL, Schwartz JH (1993) Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci USA 90:7436–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8:1051

    Article  CAS  PubMed  Google Scholar 

  207. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    Article  CAS  PubMed  Google Scholar 

  208. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D (1995) Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 270:19702–19708

    Article  CAS  PubMed  Google Scholar 

  210. Gregori L, Hainfeld JF, Simon MN, Goldgaber D (1997) Binding of amyloid β protein to the 20 S proteasome. J Biol Chem 272:58–62

    Article  CAS  PubMed  Google Scholar 

  211. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29:1607–1618

    Article  CAS  PubMed  Google Scholar 

  212. Song S, Kim S-Y, Hong Y-M, Jo D-G, Lee J-Y, Shim SM, Chung C-W, Seo SJ, Yoo YJ, Koh J-Y, Lee MC, Yates AJ, Ichijo H, Jung Y-K (2003) Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol Cell 12:553–563

    Article  CAS  PubMed  Google Scholar 

  213. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85:115–122

    Article  CAS  PubMed  Google Scholar 

  214. Huang Q, Wang H, Perry SW, Figueiredo-Pereira ME (2013) Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J Biol Chem 288:12161–12174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Alexander J, Kalev O, Mehrabian S, Traykov L, Raycheva M, Kanakis D, Drineas P, Lutz MI, Ströbel T, Penz T, Schuster M, Bock C, Ferrer I, Paschou P, Kovacs GG (2016) Familial early-onset dementia with complex neuropathologic phenotype and genomic background. Neurobiol Aging 42:199–204

    Article  CAS  PubMed  Google Scholar 

  216. Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, Chen P-C, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee JH, Shin SK, Jiang Y, Choi WH, Hong C, Kim D-E, Lee MJ (2015) Facilitated tau degradation by USP14 aptamers via enhanced proteasome activity. Sci Rep 5:10757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Köycü S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    Article  PubMed  Google Scholar 

  219. Evans DA, Van der Kleij AA, Sonnemans MA, Burbach JP, Van Leeuwen FW (1994) Frameshift mutations at two hotspots in vasopressin transcripts in post-mitotic neurons. Proc Natl Acad Sci USA 91:6059–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. De Vrij FM, Sluijs JA, Gregori L, Fischer DF, Hermens WT, Goldgaber D, Verhaagen J, Van Leeuwen FW, Hol EM (2001) Mutant ubiquitin expressed in Alzheimer’s disease causes neuronal death. FASEB J 15:2680–2688

    Article  PubMed  Google Scholar 

  221. Fischer DF, De Vos RA, Van Dijk R, De Vrij FM, Proper EA, Sonnemans MA, Verhage MC, Sluijs JA, Hobo B, Zouambia M, Steur EN, Kamphorst W, Hol EM, Van Leeuwen FW (2003) Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J 17:2014–2024

    Article  CAS  PubMed  Google Scholar 

  222. Tan Z, Sun X, Hou F-S, Oh H-W, Hilgenberg LGW, Hol EM, Van Leeuwen FW, Smith MA, O’Dowd DK, Schreiber SS (2007) Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ 14:1721–1732

    Article  CAS  PubMed  Google Scholar 

  223. van Tijn P, de Vrij FMS, Schuurman KG, Dantuma NP, Fischer DF, Van Leeuwen FW, Hol EM (2007) Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. J Cell Sci 120:1615–1623

    Article  PubMed  CAS  Google Scholar 

  224. Krutauz D, Reis N, Nakasone MA, Siman P, Zhang D, Kirkpatrick DS, Gygi SP, Brik A, Fushman D, Glickman MH (2014) Extended ubiquitin species are protein-based DUB inhibitors. Nat Chem Biol 10:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chojnacki M, Zhang DN, Talarowska M, Galecki P, Szemraj J, Fushman D, Nakasone MA (2016) Characterizing polyubiquitinated forms of the neurodegenerative ubiquitin mutant UBB+1. FEBS Lett 590:4573–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lindsten K, de Vrij FMS, Verhoef LGGC, Fischer DF, Van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Braun RJ, Sommer C, Leibiger C, Gentier RJG, Dumit VI, Paduch K, Eisenberg T, Habernig L, Trausinger G, Magnes C, Pieber T, Sinner F, Dengjel J, Van Leeuwen FW, Kroemer G, Madeo F (2015) Accumulation of basic amino acids at mitochondria dictates the cytotoxicity of aberrant ubiquitin. Cell Rep 10:1557–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Saraiva AA, Borges MM, Madeira MD, Tavares MA, Paula-Barbosa MM (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicrosc Cytol 17:459–464

    CAS  PubMed  Google Scholar 

  229. Casley CS, Land JM, Sharpe MA, Clark JB, Duchen MR, Canevari L (2002) Beta-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 10:258–267

    Article  CAS  PubMed  Google Scholar 

  230. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  CAS  PubMed  Google Scholar 

  231. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse S, Brandt U, Savaskan E, Czech C, Götz J, Eckert A (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106:20057–20062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  PubMed  Google Scholar 

  233. Escobar-Henriques M, Langer T (2014) Dynamic survey of mitochondria by ubiquitin. EMBO Rep 15:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R, Yanagi S (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25:3618–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  CAS  PubMed  Google Scholar 

  238. Khandelwal PJ, Herman AM, Hoe H-S, Rebeck GW, Moussa CE-H (2011) Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20:2091–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  240. Witte ME, Bol JGJM, Gerritsen WH, Valk PVD, Drukarch B, Horssen JV, Wilhelmus MMM (2009) Parkinson’s disease-associated parkin colocalizes with Alzheimer’s disease and multiple sclerosis brain lesions. Neurobiol Dis 36:445–452

    Article  CAS  PubMed  Google Scholar 

  241. Du F, Yu Q, Yan S, Hu G, Lue L-F, Walker DG, Wu L, Yan SF, Tieu K, Yan SS (2017) PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 140:3233–3251

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32:2099–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Barber IS, Braae A, Clement N, Patel T, Guetta-Baranes T, Brookes K, Medway C, Chappell S, Guerreiro R, Bras J, Hernandez D, Singleton A, Hardy J, Mann DM, ARUK Consortium, Morgan K (2017) Mutation analysis of sporadic early-onset Alzheimer’s disease using the NeuroX array. Neurobiol Aging 49:215.e1–215.e8

    Article  CAS  Google Scholar 

  244. Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Safiulina D, Kuum M, Choubey V, Gogichaishvili N, Liiv J, Hickey MA, Cagalinec M, Mandel M, Zeb A, Liiv M, Kaasik A (2018) Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J 38:e99384

    PubMed  PubMed Central  Google Scholar 

  246. Wu H, Carvalho P, Voeltz GK (2018) Here, there, and everywhere: the importance of ER membrane contact sites. Science 361:eaan5835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Herrera-Cruz MS, Simmen T (2017) Over six decades of discovery and characterization of the architecture at mitochondria-associated membranes (MAMs). Adv Exp Med Biol 997:13–31

    Article  CAS  PubMed  Google Scholar 

  248. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393

    Article  CAS  PubMed  Google Scholar 

  250. Vance JE (1991) Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem 266:89–97

    CAS  PubMed  Google Scholar 

  251. Hirabayashi Y, Kwon S-K, Paek H, Pernice WM, Paul MA, Lee J, Erfani P, Raczkowski A, Petrey DS, Pon LA, Polleux F (2017) ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  PubMed  Google Scholar 

  253. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 110:12526–12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung C-H, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Sliter DA, Aguiar M, Gygi SP, Wojcikiewicz RJH (2011) Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J Biol Chem 286:1074–1082

    Article  CAS  PubMed  Google Scholar 

  257. Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287:40652–40660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N, Inatome R, Yanagi S (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51:20–34

    Article  CAS  PubMed  Google Scholar 

  259. Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V (2015) The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for Alzheimer’s disease therapy. J Biol Chem 290:30670–30683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Pera M, Larrea D, Guardia Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area Gomez E (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, Sandebring A, Westerlund M, Graff C, Winblad B, Galter D, Behbahani H, Pizzo P, Glaser E, Ankarcrona M (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 110:7916–7921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Dröse S, Brandt U, Müller WE, Eckert A, Götz J (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802–23814

    Article  CAS  PubMed  Google Scholar 

  263. Area Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I, Pon L, Schon EA (2018) A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 9:335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  266. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  CAS  PubMed  Google Scholar 

  267. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier J-M, Dobson RCJ, Webb AI, Tripaydonis A, Babon JJ, Mulcair MD, Scanlon MJ, Alexander WS, Wilks AF, Czabotar PE, Lessene G, Murphy JM, Silke J (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111:15072–15077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, Ward Y, Wu L-G, Liu Z-G (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65

    Article  CAS  PubMed  Google Scholar 

  269. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246

    Article  CAS  PubMed  Google Scholar 

  270. Shao L, Liu X, Zhu S, Liu C, Gao Y, Xu X (2018) The role of Smurf1 in neuronal necroptosis after lipopolysaccharide-induced neuroinflammation. Cell Mol Neurobiol 38:809–816

    Article  CAS  PubMed  Google Scholar 

  271. Ali M, Mocarski ES (2018) Proteasome inhibition blocks necroptosis by attenuating death complex aggregation. Cell Death Dis 9:346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34:7988–7998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-I, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  275. Rubinsztein DC, Bento CF, Deretic V (2015) Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 212:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Myeku N, Duff KE (2018) Targeting the 26S proteasome to protect against proteotoxic diseases. Trends Mol Med 24:18–29

    Article  CAS  PubMed  Google Scholar 

  277. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Lokireddy S, Kukushkin NV, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 112:E7176–E7185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22:46–53

    Article  CAS  PubMed  Google Scholar 

  280. Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M (2009) Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci USA 106:16877–16882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA 99:13217–13221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98:8554–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zhou P, Bogacki R, McReynolds L, Howley PM (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 6:751–756

    Article  CAS  PubMed  Google Scholar 

  284. Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126:3748–3754

    Article  CAS  PubMed  Google Scholar 

  285. Schneekloth AR, Pucheault M, Tae HS, Crews CM (2008) Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett 18:5904–5908

    Article  CAS  PubMed  Google Scholar 

  286. Itoh Y, Ishikawa M, Naito M, Hashimoto Y (2010) Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc 132:5820–5826

    Article  CAS  PubMed  Google Scholar 

  287. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, Wang J, Chen X, Dong H, Siu K, Winkler JD, Crew AP, Crews CM, Coleman KG (2016) PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA 113:7124–7129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Desroses M, Altun M (2017) The next step forward in ubiquitin-specific protease 7 selective inhibition. Cell Chem Biol 24:1429–1431

    Article  CAS  PubMed  Google Scholar 

  290. Kategaya L, Di Lello P, Rougé L, Pastor R, Clark KR, Drummond J, Kleinheinz T, Lin E, Upton J-P, Prakash S, Heideker J, McCleland M, Ritorto MS, Alessi DR, Trost M, Bainbridge TW, Kwok MCM, Ma TP, Stiffler Z, Brasher B et al (2017) USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550:534–538

    Article  CAS  PubMed  Google Scholar 

  291. Lamberto I, Liu X, Seo H-S, Schauer NJ, Iacob RE, Hu W, Das D, Mikhailova T, Weisberg EL, Engen JR, Anderson KC, Chauhan D, Dhe-Paganon S, Buhrlage SJ (2017) Structure-guided development of a potent and selective non-covalent active-site inhibitor of USP7. Cell Chem Biol 24:1490–1500.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Pozhidaeva A, Valles G, Wang F, Wu J, Sterner DE, Nguyen P, Weinstock J, Kumar KGS, Kanyo J, Wright D, Bezsonova I (2017) USP7-specific inhibitors target and modify the enzyme’s active site via distinct chemical mechanisms. Cell Chem Biol 24:1501–1512.e5

    Article  CAS  PubMed  Google Scholar 

  293. Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, Tonkin LM, Townsend EC, Buker SM, Lancia DR, Caravella JA, Toms AV, Charlton TM, Lahdenranta J, Wilker E, Follows BC, Evans NJ, Stead L, Alli C, Zarayskiy VV et al (2017) Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Williams for feedback on the chapter. The authors acknowledge funding from Alzheimer’s Research UK (pilot grant ARUK-PPG2015A-16) as well as Bath/Bristol ARUK network pilot grants. Lee Harris is funded by an ARUK PhD studentship (ARUK-PhD2017-28), Sarah Jasem was funded through a Kuwait Science PhD Scholarship. We also thank COST ACTION BM1307 – COST Proteostasis – as well as the Bath/Bristol ARUK Network for conference travel awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien D. F. Licchesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harris, L.D., Jasem, S., Licchesi, J.D.F. (2020). The Ubiquitin System in Alzheimer’s Disease. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_8

Download citation

Publish with us

Policies and ethics